
HTSN: A complex workflow model based on colored Petri net 
 

Haiping Zhu*, Peigen Li, Guojun Zhang 
School of Mechanical Science & Engineering, Huazhong University of Science &Technology, 

Wuhan, Hubei 430074, P R China 
 

                                                        
* Corresponding author 

ABSTRACT 
Traditional workflow models have obvious shortcomings 
in describing complex workflows. Such complexity is due 
not only to the hierarchical property of business process, 
but also to the complicated dependencies among tasks. In 
this paper, we first introduce a conceptual task model 
based on UML class graph. Then we apply colored Petri 
nets to model task interfaces and composite task versions 
which form Task State Nets (TSNs) and Task Version 
Nets (TVNs). The main advantage is that they explicitly 
express all task interfaces’ internal states and thus they 
can easily describe the complex control dependencies. 
Next we further combine TSN/TVN with place refining 
mechanism and bring forward our Hierarchical Task State 
Net (HTSN). It supports the description of workflow’s 
hierarchical structure, multi-versions configuration of 
composite task as well as the analysis of structural 
properties. Finally, we give a case study. 
Keywords:  Complex workflow; Colored Petri net; Task 
State Net; Task version; Hierarchical Task State Net  

1. INTRODUCTION 
Workflow management systems have been adopted by a 
wide range of organizations to control their daily business 
processes. A specific workflow is the formal expression of 
a process that should pass through four phases: conceptual 
design, model definition, process configuration and 
execution, where model definition phase is vital to bring a 
natural process description to a computerized definition.  
Due to its graphical and formal semantics, classic Petri net 
has been widely used for workflow modeling. Adam et al. 
[1] categorized several types of dependencies among 
workflow tasks. But he only studied on some simple 
dependencies with Petri net. In documents [3] [5] [6], Van 
der Aalst systemically employed Petri net to describe 
workflow in the control-flow perspective and defined 
Workflow Net. Also in his theory some key properties, 
such as liveness, boundness and soundness were identified 
to facilitate workflow evaluation and analysis. However, 
since Workflow Net is just one type of classic Petri net, it 
is inconvenient to describe complex systems 
Other researchers preferred advanced Petri nets. Cho et al. 
[7] used colored Petri net (CPN) to study the transactional 
workflow. They proposed Task Net which can 
differentiate workflow versions and cases with token 
colors. Liu et al. [8] also studied the document review 
workflow with CPN. Their work was basically similar to 
common Workflow Net except that they used token color 
to identify document types and choose execution routes. 
Stork [9] applied hierarchical predicate/transition net to 
active document workflow and used structured token to 
carry various kinds of control information, which could be 
used for refinement of refinable place. But generality is 
lost and task states are neglected here. 
Some approaches other than Petri net were also used to 
model and analyze workflow. Joeris et al. [11] bring 
object-oriented theory and ECA (Event-Condition-Action) 
rule [17] in workflow modeling. He also studied revise 

rules of different workflow versions [2]. Reichert et al. [12] 
combined common directed graph with text description to 
describe workflow’s dynamic change and studied several 
common structural adjustment approaches. He also gave 
some algorithms to check whether structural adjustment 
would result in structural errors. The common 
shortcoming of the above mentioned approaches is that 
they are lack of strict mathematic theoretic basis. 
In this paper, we introduce colored Petri nets into complex 
workflow modeling and apply Task State Nets (TSNs), 
Task Version Nets (TVNs) and Hierarchical Task State 
Nets (HTSNs) to model task interfaces, composite task 
versions and hierarchical workflows respectively. They 
explicitly express all task interfaces’ internal states and 
can easily describe the complex control dependencies.  
The remainder of this paper is organized as follows. In 
Section 2, we bring forward a workflow conceptual task 
model. In Section 3, we define TSN, TVN and HTSN, and 
discuss how to use them to describe task interfaces, 
control-flow dependencies among tasks and workflow’s 
hierarchical structures. In Section 4, we give a case study 
on the complex workflow in engineering change process. 
In section 5, a conclusion is drawn.  

2. COMPLEX WORKFLOW MODEL 
Some enterprise processes are naturally complex. 
Consider the engineering change (EC) process in the PDM 
(Product Data Management) system. As we know, PDM 
system manages a lot of business objects including 
products, parts, documents and BOMs (Bill of Material), 
etc [18]. After the general review process, all these objects 
reach their release status when any direct updates are 
denied. However, changes are inevitable. To maintain 
effective control over changes and guarantee the 
information consistency, complex EC workflows should 
be designed in PDM system. 
The complexities mainly show in the following aspects:  
(1) Workflow’s hierarchy coming from the hierarchy of 
business goals and organization structures [4]. 
(2) Complex and dynamic dependencies. Dynamic 
dependencies result from business process reengineering 
or some unusual variations, such as adding of business 
object types. Except the ad hoc changes, each variation 
generates a new task version for certain level and these 
versions enjoy different application scope [2]. 
(3) Semi-precise. Complex workflow does not strictly 
differentiate between definition phase and execution phase. 
On one hand, imprecise details at lower level can be 
hidden by abstraction at higher level; on the other hand, in 
execution phase tasks at each level can be precisely parsed 
level to level through task version configuration and 
dynamic adjustment of task internal structure.  
All these complexities increase more requirements to 
workflow research. Firstly, semi-precise workflow design 
and modeling theory should be built. Secondly, the model 
should possess the capability to configure tasks to improve 
flexibility and customization property. The key idea is to 
construct imprecise generic model which can be 
dynamically configured into precise workflow models 



according to several predefined parameters. Thus, a 
generic model could represent a variety form of 
workflows. Thirdly, the model should support verification 
analysis and running simulation. Finally, the workflow 
should be flexibly executed, that is, allowing 
adding/removing a task, skipping a task, changing the 
dependencies among tasks, etc.  

 
Fig.1: UML description of conceptual task model. 

Fig.1 illustrates the conceptual task model introduced by 
author. This UML class graph includes several classes and 
interfaces, representing some important concepts in 
complex workflow. Detailed explanations are given later. 
Goals [4] show why a workflow is designed and what 
functions it needs to provide. They can be classified into 
functional goals and non-functional goals. We often 
regard a big business flow as a root goal that can be 
divided into several more concrete parts. Also certain 
parts can be divided further. In this top-down dividing 
process, some parent-goals may be divided according to 
different approaches resulting in different sub-goal 
collections. This structure is expressed as a goal tree. 
Def. 1 (Goal Tree). Goal tree is a 5-tuple 
( ,  ,  ,  ,  )G r necessity option choice  where G  represents 
a finite set of goals, including all parent-goals and 
sub-goals; r G∈  represents the root goal; 

  necessity G G∈ ×  is a set of all necessary parent-child 
relationships such that for any two goals p and c, if 
( ,  )p c necessity∈ , then realization of child-goal c is 
necessary to realization of parent-goal p; 

  option G G∈ ×  is a set of all optional parent-child 
relationships such that for any two goals p and c,  if 
( ,  )p c option∈ , then realization of child-goal c is 
optional to realization of parent-goal p; 

  ...  choice G G G∈ × ×  is a set of all choice 
relationships such that for any n+1 goals p and c1,…,cn, if 
( ,  ,  ...,  )1p c c choicen ∈ , then one and only one ci (1 ≤ i 

≤ n) is the child-goal of parent-goal p.  
Each functional goal node in the goal tree corresponds to a 
task implementation. During workflow instance’s 
execution, each task case will pass through a series of 
states. In Fig. 1, task is represented as an abstract class 
‘Task’, which derives two abstract subclasses: 
ElementaryTask and CompisiteTask. 
Def. 2 (Elementary Task). Elementary task is a type of 
task without detail structure. Its state set is SET such that 

{ , , , , , }ETS inactive active skipped running completed aborted= . 
Def. 3 (Composite Task). Composite task is a type of task 
being composed of a series of tasks. The state s of a 
composite task is represented as 0 ctis s s= + Σ  where 

0 ETs S∈  represents the state of the whole composite task 

while ctisΣ  represents the state combination of all 
component sub tasks. 
The dependencies among sub tasks of a composite task 
can be classified into external dependencies, control-flow 
dependencies and data-flow dependencies according to 
their properties. Since external dependencies are usually 
determined by external factors such as organization 
constraints and time constraints that are independent of 
workflow, they are beyond this paper.  
At most time, we need not care about details of subtasks 
within a composite task. So we use interfaces to realize 
abstraction. Interface is a concept initially introduced in 
object-oriented software design theory. It declares some 
method definitions while does not realize them so that 
many different classes can realize the same interface to 
achieve polymorphous. The task interface acts in the same 
way except that what it declares are goals and required 
dependencies instead of method definitions.  
Def. 4 (Task Interface). Task interface TI  is a 3-tuple 
( , , )G CD DD  where G  represents the set of goals to be 
achieved, CD  represents the set of control-flow 
dependencies to be realized and DD  represents the set 
of data-flow dependencies to be realized.  
Therefore, the dependency source and destination are both 
task interfaces instead of tasks. As shown in Fig.1, 
TaskInterface implemented by an abstract class ‘Task’ 
aggregates one or multiple goals. An abstract association 
class ‘Dependency’, which expresses dependencies among 
task interfaces, derives two subclasses: 
ControlDependency class and DataDependency class. 
Since each task interface does not detail its internal 
structure, it can be implemented in different ways 
resulting in different task versions. In Fig.1, an abstract 
class ‘TaskVersion’ derives two subclasses: 
CompositeTaskVersion class and ElementaryTaskVersion 
class representing composite task version and elementary 
task version respectively. In general, there are two main 
different forms of task versions: one is the build-time 
version occurring in the workflow design phase if 
different realizing approaches to the same goal exist. The 
other is the run-time version generated in the running 
phase when structural adjustments such as adding a task 
occur and these changes are permanent. 
Due to the existence of multiple versions, version 
configuration rules are highly necessary. There are several 
commonly used rules. 1) Automatically choosing the latest 
version. It’s used in the business process reengineering to 
immediately apply the change to all following workflow 
instances; 2) Always using the same version during an 
instance’s lifecycle even if another instance generates a 
new version; 3) Choosing task version according to the 
property of workflow instances. For example, in document 
workflow, different documents may choose different 
processes according to document types which could be 
defined as version configuration parameters; 4) Choosing 
task version according to the time. That is, some task 
versions are only useful in certain time period or 
before/after certain time points.  

3. HTSN OF COMPLEX WORKFLOW 
In this section, we propose HTSN which is a complex 
workflow model based on hierarchical colored Petri net 
and embodies the idea of conceptual task model illustrated 
in Fig. 1. As mentioned above, none of the current 
Petri-net-based workflow models can explicitly express 



task state transitions resulting in the unidentifiability of 
task states. Therefore, some complex dependencies, such 
as the soft-synchronization dependency [1] and the 
multi-choice synchronizing merge dependency [13] are 
difficult to express. Moreover, classic Petri nets do not 
support modularity, and thus they can not realize version 
configuration. We instead apply colored Petri net [15] to 
describe task interfaces, task dependencies and task 
versions. First we introduce Task State Net. 
Task State Net 
Fig. 2 depicts a task interface in two different perspectives 
and forms Task State Net which is a specific type of CPN. 
The external interface hides its internal details and acts 
like a transition. Its dependencies with other interfaces are 
expressed as various places. The internal structure 
describes the state transition process of internal states of 
interface under the external control dependencies and data 
dependencies in detail. As shown in Fig. 2(2), when 
initialized, an inactive instance can either be skipped to 
state skipped or be started to state active. If activated, such 
instance will appear in the task box of a certain user. So 
this user can select to open it and make it enter into state 
running, and then make a decision in three choices, i.e., 
either completing it, or aborting it, or making it back to 
state active.  

 
Fig. 2:  Task State Net. 

Def. 5. Task State Net (TSN) describes a task interface 
TI in a 6-tuple ( ,  ,  ,  ,   ,  )P T A E IΣ  where: 
(1) Σ is a finite set of color sets including the following 

type of colors: 
 ,    ;       ;  

   ;      ;    

color WID EID int color DA Object

color TS WID EID color TD WID DA

= =

= × = ×
 

WID is a unique positive integer type identifier to 
differentiate the different workflow instances. EID is a 
unique positive integer type identifier to differentiate the 
different execution times of a specific task in current 
workflow instance. DA stands for all data objects. TS is 
the product set of WID and EID. TD is the product set of 
WID and DA.  
(2) P is a finite set of places such that:  

 P SP DP CIP COP⊆ ∪ ∪ ∪ , where: 
{ , , ,  ,  , }SP inactive active skipped running completed aborted=  

are places representing task states; 
,  { 1,..., } and { 1,..., }DP DI DO DI din dinp DO dout doutq= ∪ = =

 are several places representing inputting and outputting 
data dependencies respectively; 

{ _ , _ , _ }CIP p start p skip p complete=  are places 
representing inputting control dependencies. 

{ _ , _ , _ , _ , _ }COP o running o skipped o completed o sleeping o aborted=
 are places representing outputting control dependencies. 

 The token color in each place satisfies: 
                       

 ( )                         
                   

   
TD p DP

Color p TS p SP
WID p CIP COP

⎧ ∈
⎪

= ∈⎨
⎪ ∈ ∪⎩

. 

(3) T is a finite set of transitions such that 
{ , , , , , }T skip start run sleep complete abort⊆ which 

represent all task state transitions. 
(4) A is a finite set of arcs such that A P T T P⊂ × ∪ ×  
and ,    ( ,  )a A a S D∀ ∈ = . 
(5) E is an arc expression function defined on A: 

 : ;    : ;    : ;

'1 ( , )             .   .
'( ) 1                        .   .
'1 ( , )              .   .

var wid WID var eid EID var da DA

wid eid a S SP a D SP

E a wid a S CIP a D COP

wid da a S DP a D DP

⎧ ∈ ∧ ∈⎪
⎪

= ∈ ∨ ∈⎨
⎪

∈ ∨ ∈⎪⎩

. 

(6) I is an initialization function defined on P such that: 
'1 ( ,1)        ( )       

                  

wid p inactiveI p
otherwise

==
∅

⎧
⎨
⎩

. 

Description of dependencies among TSNs 
In workflow system, a composite task contains multiple 
task versions that are composed of multiple task interfaces. 
There are various complex control-flow dependencies and 
data-flow dependencies among these interfaces. In brief, a 
control-flow dependency shows the mapping from the 
output control cop1 of task interface TI1 to the input 
control cip2 of interface TI2. The arc expression of the 
corresponding CPN graph depicted in Fig. 3(1) is 

'( ) 1E a wid=  such that {( 1, 1), ( 2, 2)}a TI cop cip TI∈ . 
The semantic indicates that TI2’s internal state transition 
can fire only when a token with color wid is produced into 
place cop1/cip2. For example, Fig. 3(2) represents the 
common completed->start dependency. After TI1 fires its 
complete transition, it will reach its completed state when 
a token (1000,1) is produced into place completed and a 
token (1000) is produced into place o_completed. Since 
o_completed is also the input place p_start of transition 
start in TI2 and at that time, TI2’s place inactive has a 
token (1000,1) which is generated at initialization time, 
TI2’s transition start is enabled.  

 
Fig. 3: Control-flow dependency. 

Some complex control-flow dependencies can be 
constructed through and/xor operations. Fig. 4 shows four 
complex dependencies: AND-Split dependency, 
XOR-Split dependency, AND-Join dependency and 
XOR-Join dependency. For simplicity, we represent each 
task interface as a single transition. 

 
Fig. 4: Four complex dependencies. 

Workflow patterns are the basic workflow control 
structures abstracted from practical business processes and 
being independent of specific modeling language 
realization [13]. In fact, each workflow pattern is a 
combination of multiple control-flow dependencies. CPN 
descriptions of several common workflow patterns are 
showed below. (TI1, TI2 and TI3 as three task interfaces.)  



(1) Sequence pattern. It means TI1 and TI2 are executed 
or skipped sequentially. The corresponding CPN is 
illustrated in Fig. 5(1). TI1 can either be completed or 
skipped, if it is completed, then its place o_completed 
obtains a token which enables TI2’s transition start, and if 
it is skipped, then its place o_skipped obtains a token 
which enables TI2’s transition skip.  

 
Fig. 5:  Sequence, parallel and choice pattern. 

(2) Parallel pattern. It means when TI1 is completed, 
both TI2’s and TI3’s places p_start obtain a token, so both 
TI2’s and TI3’s transitions start are enabled; and if TI1 is 
skipped, both TI2’s and TI3’s transitions skip are enabled. 
Its CPN is shown in Fig. 5(2). 
(3) Choice pattern. It means when TI1 is skipped, both 
TI2 and TI3 are skipped; when TI1 is completed, TI2 or 
TI3 is started; if TI2 is started then TI3 is skipped, and 
vice versa, i.e., they can not both be started. Its CPN is 
shown in Fig. 5(3). 
(4) Synchronization pattern. It means TI3 can be started 
only if both TI1 and TI2 are completed and be skipped 
only if both TI1 and TI2 are skipped. Its CPN is shown in 
Fig. 6(1). 

 
Fig. 6:  Synchronization pattern and merge pattern. 

(5) Merge pattern. It means TI3 can be started if either 
TI1 or TI2 is completed and be skipped only if both TI1 
and TI2 are skipped. Its CPN is shown in Fig. 6(2). 

 
Fig. 7:  CPN description of cycle pattern. 

(6) Cycle pattern. It means when TI1 is completed, either 
TI2 is started or TI3 before TI1 is executed again. As 
shown in Fig. 7, one transition λ, several places reset and 
several transitions loop (from TI3 to TI1) are inserted. If 
transition λ is fired, each place reset will obtain one token 
wid, which enables each transition loop. We denote the 
input and output arc expressions of loop as following: 

'1           {( , ),( , _ )}
'1 ( , )     ( , )
'1 ( , 1) ( , )

( )  

wid a reset loop loop p start

wid i a inactive loop

wid i a loop inactive

E a

⎧ ∈⎪
⎪

=⎨
⎪

+ =⎪⎩

= . 

So, TI3 will soon change to state active and its execution 
time will automatically plus one. 
(7) Soft-synchronization pattern. It means TI2 can be 
started when TI1 is either completed or skipped.  
(8) Multi-choice synchronizing merge pattern. There are 
n branches (TI_1~TI_n) after TI_start and possibly m 
(m≤n) branches will be chosen for running. These m 
branches need to be synchronized before TI_end can be 
started. Its CPN description is shown in Fig. 8. 

 
Fig. 8:  Multi-choice synchronizing merge pattern. 

Expression of data flow dependency 
Data-flow dependencies reflect the data objects 
providing/using relationships. The CPN description is 
similar to that of control-flow dependency in Fig. 3(1) 
except that the connective place is not cout1/cin2 but 
dout1/din2 and its token color is not WID but TD 
(TD=WID×DA). 
CPN definition of composite task version 
Each composite task version is made up of lots of task 
interfaces interconnected by several control-flow and 
data-flow dependencies. On the basis of TSN and CPN 
descriptions of dependencies, we give the following 
formal definition of Task Version Net. 
Def. 6.  A composite Task Version Net (TVN) is a CPN 
with the following characteristics: 
(1) It contains n (n≥1) TSNs ( task interfaces) which 
have the CPN structures in Fig. 2;  
(2) There is one unique entry TSN whose execution 
indicates the beginning of this TVN, and one unique exit 
TSN whose completion indicates the finish of this TVN;  
(3) The various dependencies among TSNs are 
represented by the CPN structures as shown in Fig. 3 and 
grouped by corresponding workflow patterns; 
(4) During the initialization time, each TSN’s place 
inactive will obtain a colored token (wid, eid). 
Hierarchical Task State Net description of workflow 
In order to fulfill the mapping from one task interface to 
several composite task versions, we introduce the place 
refining mechanism. In Fig. 2(2), if TI is a composite task 
interface, its running place with gray background color is 
a refinable place that can be refined to certain task version 
as the region enclosed by the dash line circle in Fig. 9. The 
same refinable place can be refined to different structures 
which correspond to different task versions and such 
refining process can be done recursively. That is, all the 
places running of TI1~TIn in Fig. 9 can also be refinable 
and have their lower level structures. The following is the 
formal definition of Hierarchical Task State Net (HTSN). 

 
Fig. 9: CPN description of TSN’s mapping to TVN. 

Def. 7. HTSN is a 5-tuple ( ,  ,  ,  ,  )TSN TVN RP TVA R  
satisfying the following requirements: 
(1) TSN is a finite set: TSN CTSN ETSN= ∪  which 
includes all composite task interfaces (CTSN) and all 
elementary task interfaces (ETSN); 
(2) TVN is a finite set of task versions: 

1{ , ... }nTVN TVN TVN=  which includes all composite 
task versions at all workflow levels;  
(3) Other elements are relative to place refinement: 

 RP  is a finite set of refinable places including all 
places running of the CTSN; 



 :  TVA CTSN TVN→  is a task version 
configuration function. There is a one to several mapping 
from CTSN and TVN, i.e., one place running may be 
refined to multiple different task versions. Each kind of 
mapping corresponds to a certain rule. R represents such a 
set of configuration rules such that 

:  ( )R CTSN TVN Boolean× → . 
Execution and structural analysis of HTSN 
The execution of a workflow instance is just a parsing 
process of HTSN. As shown in Fig. 9, when a new 
workflow instance arrives, a new token (wid, 1) will be 
generated into the place inactive of the root task interface 
TSN0. Then, TSN0 may reach its running state. If place 
running is a refinable place, then a certain task version or 
TVN must be chosen for execution according to the 
version configuration rule R. This brings the instance to 
the second level. At that time, all TSNs of the chosen TVN 
are initialized firstly (one (wid, 1) token is generated into 
each inactive place) and the place p_start of the entry TSN 
in this TVN (TI1 in Fig. 9) obtains a token which enables 
its transition start. Next, TSNs are executed in an order 
decided by those dependencies. And similarly, during the 
execution of TSNs at the second level, multiple refinable 
places might also exist. Therefore, the refining process 
will be done recursively until a level is reached where all 
task interfaces are elementary and their running places are 
no longer refinable.  
One advantage of this hierarchical structure is that it can 
be dynamically adjusted. Traditional workflow model 
regards a workflow instance as one running of the model. 
So, ever since the instance is initialized, the running route 
is totally determined. Any change of this model can only 
be reflected in new instance instead of the current running 
instance. Instance transferring always fails to fulfill due to 
the state space change. On the contrary, a change to the 
instance with a hierarchical structure affects a much 
smaller scope. When a task version changes, a new task 
version will be generated and the configuration rules will 
be revised. As a result, when current instance loops to or 
other instances reach this interface, such new version 
could be chosen for running. 
Another advantage of HTSN is that the workflow structure 
can be maintained well by verifying the TVNs’ structure. 
For the task version net: TVN=(TSN0,…,TSNn) where 
TSN0 stands for the entry Task State Net and TSNn stands 
for the exit Task State Net, we denote its initial marking 
Mi and end marking Mo of the eid-th execution as follows: 
if every place inactive of TSN satisfies 
M(inactive)=(wid,eid) and any other place satisfies 
M(p)=empty, then the current making is Mi; if either place 
completed or skipped or aborted of TSNn satisfy 
M(p)=(wid,eid) and no transitions are enabled any more, 
then the current making is Mo. Just as Workflow Net [16], 

the following soundness property must be satisfied in 
order to ensure TVN’s liveness and deadlock free.  
(1) For each making M reached from Mi, there is a firing 
sequence which leads from state M to M0 and no deadlock 

exists, i.e., * *'( ) ( )i oM M M M M∀ ⇒⎯→ ⎯→ . 
(2) At the end making Mo, each TSN is in either skipped 
or completed or aborted state, i.e., 

( ) ( , ) (

                   ( , ) ( ) ( , )

,    )i i i

i

TSN M completed wid eid M skipped

wid eid M aborted wid eid

∀ ⊇ ∨

⊇ ∨ ⊇
, and 

no tokens exist in any place active and running, i.e., 
,  ( ) ( )i i iTSN M active M running empty∀ = = . That is, 

every TSN has been executed at least once and normally 
terminated. 
There are generally two approaches to analyze the 
soundness attribute. One is the CPN mathematic analysis 
theory and the other is the simulation method [15]. 

4. CASE STUDY 
To further explain the concepts of complex workflow, we 
provide an example of engineering change (EC) process 
for a large manufacturing enterprise in this section. As 
mentioned in Section 2.1, no doubt EC process is a 
representative complex workflow with hierarchical 
structures and complex dependencies.  
Firstly, the goal tree of a simplified EC process is 
constructed in the conceptual design phase. As shown in 
Fig. 10, it contains a number of goal nodes whose three 
parent-child relationships, i.e., necessary relation, optional 
relation and choice relation are depicted by different 
arrowheads. The following lists these elements. 

{ 0, 1, 2, 3,..., 18},     0,     

{( 1, 3), ( 1, 4), ( 2, 6), ( 2, 7), ( 2, 8),

        ( 7, 9), ( 7, 11), ( 8, 12), ( 10, 15), ( 10, 18)},

{( 2, 5), ( 7, 10), ( 10, 16), ( 10, 17)},     

G g g g g g r g

necessity g g g g g g g g g g

g g g g g g g g g g

option g g g g g g g g

choice

= =

=

=

= {( 0, 1, 2), ( 8, 13, 14)}g g g g g g

 

At the top level, due to the different influencing degree of 
change, the root goal EC workflow has two choice child 
goals: simple change and complex change. The former is 
applied to urgent change while the later is applied to 
complex but less urgent change. For the goal complex 
change, its child goal issue description is optional while 
the other three child goals: change request, change 
evaluation and change activity are all necessary. Similarly, 
the goal change analysis has two necessary children: issue 
classification and analysis summary, and two optional 
children: design analysis and process analysis.

Engineering change workflow

Issue description
Change request

Change activity

Reason identification
Change analysis

Simple change Complex change
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Change planning

Change order
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Fig. 10: Goal decomposition tree of engineering change workflow



Secondly, in the model definition phase, this goal tree 
should be mapped to hierarchical structures where the leaf 
goal nodes such as issue classification are mapped to 
elementary task interfaces while the intermediate goal 
nodes such as change evaluation are mapped to composite 
task interfaces. Fig. 10 depicts all task interfaces/TSNs.  

,  { 0, ..., 5},  

{ 1, ..., 13}

TSN CTSN ETSN CTSN CTSN CTSN

ETSN ETSN ETSN

= ∪ =

=
 

On the one hand, each task interface must realize its goal. 
For example, CTSN4, which means the task interface of 
object (part or document) revision, must realize the goal 
g8 (change activity). On the other hand, a task interface 
may be implemented by different task versions. For 
example, task interface CTSN3 has two task versions: one 

is composed of two steps of issue identification and 
change planning; the other is composed of three steps of 
issue identification, change analysis and change planning.  
As an example, we use some TSNs to describe the task 
version TVN0 which realizes the goal g8 (change analysis) 
and implement CTSN5. Its requirements and internal 
dependencies are listed in Table 1. Fig. 11 shows the CPN 
description of this task version. Each dash-line rectangle 
represents the task interface in the form of TSN. The 
dependencies between TSNs are described by several 
places.  
Thirdly, we identify the task versions of all composite task 
interfaces and describe them in the form of HSTN. The 
details are shown in Table 2. 

Table 1. Requirements and internal dependencies of TVN0. 
TVN0 should contain four TSNs: ETSN6, ETSN7, ETSN8 and ETSN9 which represent the task 
interfaces implementing goals issue classification, design analysis, process analysis and 
analysis summary respectively. Requirements 
Since g16 (design analysis) and g17 (process analysis) are optional goals, ETSN7 and ETSN8 
can be skipped while ETSN6 and ETSN9 can not. 
If and only if ETSN6 is completed, then ETSN7 and ETSN8 can be started simultaneously, but 
ETSN7 and ETSN8 can also be skipped. 
If ETSN7 is running or skipped and ETSN8 is running or skipped, then ETSN9 can be started. 
If ETSN9 is completed, then both ETSN6 and ETSN7 must be completed (if they are running). 
ETSN7’s and ETSN8’s running need read data object o1 generated when ETSN6 is completed. 

Dependencies 

When ETSN9 is completed, a data object o2 will be generated. 
 

Fig. 11: CPN description of task version TVN0.
 

Table 2. HSTN description of the EC workflow. 
CTSN TVN  TSN TVA R: Version configuration rule 

TVN01 CTSN1 (CTSN0, TVN01) True if change is simple. CTSN0 TVN02 CTSN2 (CTSN0, TVN02) True if change is complex. 
CTSN1 TVN11 ETSN1, ETSN2 (CTSN1, TVN11) Always true. 

TVN21 ETSN3, ETSN4, CTSN3, CTSN4 (CTSN2, TVN21) True if detail issue description is 
needed. CTSN2 

TVN22 ETSN4, CTSN3, CTSN4 (CTSN2, TVN22) True if issue description is not 
needed. 

TVN31 ETSN5, CTSN5, ETSN13 (CTSN3, TVN31) True if detail change analysis is 
needed. CTSN3 

TVN32 ETSN5, ETSN13 (CTSN3, TVN32) True if change analysis is not 
needed. 

TVN41 ETSN10, ETSN11 (CTSN4, TVN41) True if the change object is a 
document. CTSN4 

TVN42 ETSN10, ETSN12 (CTSN4, TVN42) True if the change object is a part.
CTSN5 TVN51 ETSN6, ETSN7, ETSN8, ETSN9 (CTSN5, TVN51) Always true. 



Finally, before this HTSN model takes effect, we can 
simulate its execution to find structural errors. Generally, 
each task versions should be verified. Fig. 12 illustrates 
our simulation tool: HTSN Modeler and Analyzer which 
is based on the simulating theories of colored Petri net and 
is implemented by Java technology. From the simulation 
result of reachable states analysis, we can see that no 
structural errors exist in the task version TVN0. Similarly, 
we can verify all other TVNs. 

 
Fig. 12: Simulation result of HTSN Modeler and Analyzer 

5. SUMMARY 
Workflow model should have stronger description ability 
since workflow is used more widely and the business 
environments are increasingly complex. Although 
traditional Petri-net-based models are supported by 
matured theory, neither can they explicitly represent task 
states so as to express complex control dependencies, nor 
can they describe hierarchical structure so as to support 
task version configuration. Therefore, they are not suitable 
for describing complex workflow. 
Based on the complex workflow conceptual task model, 
we use colored Petri net to describe the task interfaces, 
dependencies among tasks and composite task versions, 
and put forward HTSN of workflow. Compared with other 
approaches, the HTSN model has the following 
advantages:  
(1) Hierarchical description ability. It supports 
workflow’s hierarchical structure and multiple versions 
configuration. It enables adding of new versions and 
changing of version configuration rules freely and 
dynamically so it gives the model more flexibility. 
(2) Ability to express complex control dependencies. 
Task State Net can explicitly express the different task 
states such as inactive, running, skipped and completed, so 
it is suitable for describing complex control flow 
dependencies. 
(3) Verification analysis and simulation. There are 
already some matured CPN analyses and running 
simulation tools to verify the workflow model to find 
structural errors before its execution, while other 
non-Petri-net-based workflow modeling approaches are 
lacking of this ability.  
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