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ABSTRACT 
Since huge amounts of spatial data can be 

easily collected from various applications, ranging 
from remote sensing technology to geographical 
information system, the extraction and comprehension 
of spatial knowledge is a more and more important 
task. Many excellent studies on Remote Sensed Image 
(RSI) have been conducted for potential relationships 
of crop yield. However, most of them suffer from the 
performance problem because their techniques for 
mining association rules are based on Apriori 
algorithm. In this paper, two efficient algorithms, 
two-phase spatial association rules mining and 
adaptive two-phase spatial association rules mining, 
are proposed for address the above problem. Both 
methods primarily conduct two phase algorithms by 
creating Histogram Generators for fast generating 
coarse-grained spatial association rules, and further 
mining the fine-grained spatial association rules w.r.t 
the coarse-grained frequently patterns obtained in the 
first phase. Adaptive two-phase spatial association 
rules mining method conducts the idea of partition on 
an image for efficiently quantizing out non-frequent 
patterns and thus facilitate the following two phase 
process. Such two-phase approaches save much 
computations and will be shown by lots of 
experimental results in the paper. 
Keywords: Spatial Database, Data Mining, Spatial 

Association Rules, Remote Sensed Image 
 

1. INTRODUCTION 
Those spatial data, from satellite photos or 

automated data gathering tool, such as remotely 
sensed images[21], local population, and what not 
have many widely-used sides of application, in many 
of today’ research fields. When storing large amount 
of either spatial or non-spatial data in the spatial 
database, the past data gathering tool always 
emphasizes on how to improve on searching spatial 
data as well as storage system. However, there is very 
likely some knowledge or expertise potentially resided 
in this large amount of acquired data that is not 
discovered. With the help of spatial data mining, more 
interesting and useful information are discovered 
[3][7][8][9][10][11] [14][15][16]. This has, in turn, 
brought up a new and popular field for research today.   

The methods in [4][5][6][18] for data mining on 
Remotely Sensed Images (RSI). Those methods are to 
take advantage of the association between reflectance 
intensities on RSI and crop yield through association 
rule. By looking at a profusion of remotely sensed 
images stored in geographical information system and 
considering the association between the RSI and crop 
yield at the same time, it applies data mining to 
excavate the useful expertise that may help the experts 
or agribusiness people in their difficulties to crop 

cultivation. But if applying data mining simply on 
discovering this knowledge from large amount of 
remotely sensed images, it does not sound very 
economical considering the time spent and efforts put 
in. So, designing an effective data mining method is 
very worthwhile for in-depth research.  

More details on methods from the reference will 
be discussed in Section 2. Section 3 discusses how to 
acquire the association rule on RSI from two-phase 
association rules mining method. Section 4 presents a 
method for adaptive two-phase association rules 
mining. Section 5 verifies the validity of our proposed 
method through experimentation and discussion. Last 
section is our conclusion and future works. 
 

2. ASSOCIATION RULES FOR SPATIAL 
DATABASES 

2.1 Association Rules 
There are a number of researches going on the 
association rules mining [1][2][12][13][17] [19]. The 
association rule is “ ,( , )X Y s c→ ” where X  and Y  
are an itemset with X  being the antecedent and Y  
being the consequent of rule. In example of the 
association between population and crop yield, s  
denotes the degree of support in which it represents 
the probability that X  and Y occurs simultaneously, 
and c  denotes the degree of confidence in which it 
represents the probability of Y  occurrence when X  

occurs in support( )
support( )

X Yc
X
∪

= . In some reference, 

support count = s D× , where D  is the count in 
data table. Throughout our paper, the support count 
( count ) will be taken as the count of frequent item 
sets. Decision makers can pre-define a minimum 
support count and minimum confidence in order for 
the elimination of infrequent item sets and the creation 
of association rules through frequent item sets.  
 
2.2 Spatial Data Mining on RSI 

Images on RSI can be parted into a couple of 
different types such as TM, SPOT, AVHRR, and TIFF. 
Take TM image on RSI as example, TM consists of 
seven bands which are B for Blue, G for Green, R for 
Red, RIR for Reflective-Infrared, MIR for 
Mid-Infrared, TIR for Thermal-Infrared, and MIR2 for 
Mid-Infrared2[4][5][6][18]. Each band contains a 
relative reflectance intensity value in the range 0-to 
255 for each pixel. Data mining application in the past 
always bases its viewpoint on the agricultural yield. 
One remotely sensed image is associated with yield, in 
the way which that one yield image is a map that 
defines agricultural yield standards. It is often shown 
in color or gray-scaled image. Shown in Figure 1 (a) is 
a remotely sensed image and (b) is a yield image. 
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Incorporating the association between remotely sensed 
image and yield, data mining is to excavate the useful 
expertise that may help the experts or agribusiness 
people to improve crop cultivation.   

 
(a)            (b) 

Figure 1: Remotely sensed image and Yield map 
 

3. TWO-PHASE SPATIAL ASSOCIATION 

RULES MINING METHOD 
Figure 2 illustrates our proposed two-phase 

association rule architecture for RSI data mining. First, 

acquire an image from an RSI database. Do a color 
count and analysis of variance on this image and 
generate the Histogram Generator (HG) from the 
user-predefined intervals. HG looks for the most 
representative characteristic value in an image to 
quickly find the coarse-grained association rules. 
From these coarse-grained association rules, 
fine-grained association rules can be obtained for the 
RSI database. This method is primarily divided into 
four steps. First step is color count and analysis of 
variance on remotely sensed images. Second step is to 
generate Histogram Generator according to 
user-predefined intervals. Third step is to mine out the 
coarse-grained association rules according the user 
generated HG through algorithm of association rules. 
Fourth step is to mine out the fine-grained association 
rules from the spatial database according to the 
coarse-grained association rules. The procedure on 
two-phase association rule for RSI mining as follows:  

 

Color Count &Color
Variance Analysis

Remotely
Sensed Images

Generating Histogram
Generator

Mining Coarse Association Rules

Mining Fine Association Rules

  Coarse Minimum Support
Coarse Minimum Confidence

Fine Minimum Support
Fine Minimum Confidence

Phase One

Phase Two

Coarse Assocation Rules

Fine Assocation Rules

 

Figure 2. Two-phase association rule architecture for RSI data mining 

 
Step 1: Color Count and Analysis of Variance 

In a RSI spatial database D , there are { 1 2, , , rP P P… } 
remotely sensed images in which every RSI iP  consists of 
n n×  pixels. First, calculate the pixel color count from 
each iP ; and of each iP , iT  color count is produced.  

Following is the analysis of variance. Pick a iP  and 
divide into m  number of small blocks. Calculate its pixel 
color count as 1 2, , ,i i imT T T…  from each small 

block 1 2, , ,i i imP P P…
. Take the average from pixel color 

count of m block. The formula is shown as follows: 

1
/  ,              (1)

m
i ij

j
T T m

=
= ∑  

Where ijT  denotes the pixel color count of m  number 

of small blocks of iP  and iT  the average pixel color 
count of iP  after division.    � 

Then calculate the degree of variance from color of 
this remotely sensed image; the variance formula is as 
follows:  

1
( ) / ,       (2)

m
i ij i

j
V T T m

=
= −∑  

Where ijT  denotes the pixel color count of m  number of 

small blocks of iP , iT  the average pixel color count of 

iP  after division, and iV  the color variance of iP . 
 
Example 3-1： Take Figure 3 for example calculate its 
pixel color count of this RSI. Next this image is divided 
into nine small blocks. Now calculate the color count of 
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each block assuming that the color counts for these blocks 
from 1 to 9 in the RSI are 20, 3, 10, 8, 7, 20, 2, 10 and 1, 
respectively. On to the formula (1), the average pixel color 
count of the RSI after division is calculated 
in (20 3 10 8 7 20 2 10 1) / 9 9+ + + + + + + + = . Hence, the color 
variance of this RSI based on formula (2) is calculated 
in 2 2 2[(20 9) (3 9) (1 9) ]/ 9 44.22− + − + + − =… . 

 
Figure 3. Analysis of pixel count variance in RSI 

 
Step 2: Generate Histogram Generator 

The main purpose of Histogram Generator (HG) 
reassigns the intensity of pixel for each pixel in the image. 
It means using the small intensity of pixel to substitute for 
the large intensity of pixel. For example, assume we want to 
transform the 24-bit high-color image into 256(28) gray 
image. First, we create HGs of 256 gray levels. Then, an 
input image with 16,770,000(224) high-color levels may be 
quantized to an image with only 256 gray levels. 

The main purpose of Histogram Generator is to look for 
the most representative characteristic value in images. For a 
RGB image in a 3-dimensional color space, each color 
value in every dimension ranges from 0-to-255. In this step, 
each color value in every dimension is divided into 
k intervals 0 1 1, , , kS S S −…  in which they 

are 0
2550,S
k

⎡ ⎤⎡ ⎤= ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦
, 1

255 255( 1),2S
k k

⎡ ⎤⎡ ⎤ ⎡ ⎤= +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦
, …, 

1
255(( 1) 1),255kS k
k−

⎡ ⎤⎡ ⎤= − +⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦
, respectively. Because of 

that HG defines each color value in every interval, there are, 
in every dimension, k  HGs such as 0 1 1, , , kHG HG HG −… . 
Take the medial value in each interval to be its 
representative value, the medial values as 0 2 1, , , kM M M −…  
are thus produced. 
 
Example 3-2: Take k =4 as instance, it defines HG0, HG1, 
HG2 and HG3 as [0, 64], [65, 128], [129, 192] and [193, 
255], respectively. Its median values are 32, 96.5, 160.5 and 
223.5, respectively as shown in Table 1. 
 
Table 1. Four HGs are produced for a certain color 
dimension 

Histogram 
Generator 

HG0 HG1 HG2 HG3 

Interval ( )iS  [0, 64] [65, 128] [129, 192] [193, 255]

Median Value( iM ) 32 96.5 160.5 223.5 
Step 3: Discovery of Coarse-grained Association Rules 

according to Histogram Generator 
Assume there are two images, remotely sensed image 

and yield image, each of which is of  n n×  pixels. The 

corresponding data table RSIT  for the RSI 
contains 1 2, , , , jcoordinate band band band… , where 
coordinate is the position of pixels and 

1 2, , jband band band…  has different definitions depending 
on what types in the RSI shows. From the type of TM on 
RSI shows, it consists of seven bands which are B, G, R, 
RIR, MIR, TIR and MIR2. For each tuple value tj of bandj 

are in the ranges from 0-to-255 (tj∈[0, 255]), it is specified 
it
jband . Equally the corresponding data table YieldT  for 

the yield image contains ,coordinate Yield , where 
coordinate is the position of pixels, Yield  is the yield 
standard, and each tuple value t’ of Yield are in the range 
from 0-to-255, it is specified 'tYield . For example, R255 is 
the value 255 of band R. Based on their positions of 
coordinates, the RSI and yield image are incorporated into 
one data table, namely originT , it consists of Id, coordinate, 
band1, band2, …, bandj, and Yield , where its Id  is the 
item number of the table as shown in Table 2. From the 
generated HGs by each pixel i, find every representative 
value of HGk for replacement, to which each value of bandj 

and Yield, known as it
jband  and 'tYield , belongs to. The 

concept here lies is find the minimum variance in the 
comparison between the value of it

jband  and Mk of HGk, 

from which the k  in this HG replaces it
jband . Formula 

for its calculation is as follows:  

( , ) ( )  ,   (3)j jt t
k kj jd HG band M band= ∆ −  

' '( , ) ( )  ,   (4)t t
k kd HG Yield M Yield= ∆ −  

Where kHG  represents the k-th HG, it
jband  is the value 

of bandj in one pixel i, 'tYield  is the value of Yield in one 
pixel i and Mk the k-th representative value of HG. 

The table THG is produced after each pixel in an 
image goes through the above HG quantized. The table THG 

consists of Id, coordinate, band1, band2, …, bandj, and 
Yield , as show in Table 3. 
 
Example 3-3： Suppose there are one 3×3 remotely sensed 
image and another 3×3 yield image; and in the RSI there 
are 3 bands – R, G, and B that are combined with Yield in 
the yield image as shown in Table 2. The user-defined 
intervals generate 4 Histogram Generators as shown in 
Table 1.  
 
Table 2. Original 3×3 image data table 
Id coordinate R G B Yield 
1 0, 0 255 255 255 255 
2 0, 1 255 255 255 255 
3 0, 2 255 255 255 255 
4 1, 0 255 200 50 200 
5 1, 1 200 255 255 200 
6 1, 2 200 255 255 200 
7 2, 0 100 200 255 200 
8 2, 1 100 200 255 255 
9 2, 2 100 200 255 255 

In example of coordinate (2, 0), R=100 from the 
formula (3) and (4). Other results after calculations are 
|32-100|=68 from HG0, |96.5-100|=3.5 from HG1, 
|160.5-100|=60.5 from HG2, and |223.5-100|=123.5 from 
HG3. Hence, R=100 belongs to HG1. 

 
Table 3. Quantized 3×3 image data table  

Id coordinate R G B Yield
1 0, 0 3 3 3 3 
2 0, 1 3 3 3 3 
3 0, 2 3 3 3 3 
4 1, 0 3 3 0 3 

1 2 3
4 5 6
7 8 9
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5 1, 1 3 3 3 3 
6 1, 2 3 3 3 3 
7 2, 0 1 3 3 3 
8 2, 1 1 3 3 3 
9 2, 2 1 3 3 3 

 
Then, start data mining on the THG. The process of 

data mining is based on Apriori’s algorithm [1]. And in 
mining research of association rules on RSI, the 
relationship between the RSI and yield is of our main 
concern in order for better understanding the impact of 
reflectance intensities on RSI brings on the yield. The 
relationship of these association rules is 
antecedent-and-consequent. As mentioned above, we have 
to modify Apriori. As the Algorithm 1 indicates, the 
reflectance intensities on RSI are the antecedent, and the 
yield is the consequent part which is then added to the 
resulting itemset candidate. This itemset must have its count 
larger than the minimum support(sc) to be the frequent 
itemset. Each item in frequent 1-itemsets (F1) is represented 
as I( S

jband α , 'SYield α ), because the itemsets in F1 can be 

represented as an association rule that consists of a 
antecedent and a consequent. For the association rule by the 
itmsets I, its antecedent is represented as I. S

jband α  and 

consequent as I. 'SYield α . Further calculate frequent 
A -itemsets( FA ), assume θ1∈ 1F −A  and θ2∈ 1F −A  where 
θ1≠θ2. To produce frequent A -itemsets ( FA ), first step has 

to consider whether or not θ1. 'SYield α  equals to 

θ2. 'SYield α . And if they equal to each other, they are joined 
together to produce candidate A -itemsets( CA ). In 
candidate A -itemsets ( CA ), each format of the itemsets is 

I( 1
1
Sband α , 2

2
Sband α , …, 2

2
Sband α −
−
A

A , 1
Sband β
−A , Sband γ

A , 

'SYield α ); of which I( 1
1
Sband α , 2

2
Sband α , …, 2

2
Sband α −
−
A

A , 

1
Sband β
−A , Sband γ

A ) is the antecedent, I. 'SYield α  is the 
consequent. Similarly, frequent A -itemsets ( FA ) will be 

produced. frequent A -itemsets are formatted as I( 1
Sband α , 

2
Sband α , …, Sband α

A , 'SYield α ), I. 1
Sband α , I. 2

Sband α , …, 

I. Sband α
A  is represented as the antecedent, I. 'SYield α  as 

the consequent. For example, the frequent 3-itemsets of 
I( 0R , 0G , 0B , 1Yield ), the intensity of pixel of R is 0, of G 
is 0, of B is 0, of Yield is 1. When the support count is 
larger than the minimum support count, The resulting 
association rules at last are as follows:  

1
Sband α , 2

Sband α , …, S
jband α ⇒ 'SYield α , count= sℜ ,  

CF= CFℜ , IDℜ , 

Where 1
Sband α , 2

Sband α , …, S
jband α  represents as the 

antecedent part of frequent itemset mined by THG, 'SYield α  
as the consequent part of frequent item sets mined by THG 
which is the Yield, count as the count of frequent itemset, 
CF as the confidence, and IDℜ  as the record of Id 
position of frequent itemset in Torigin, IDℜ ={Id|Id∈1, 2, …, 
n×n}.                                     � 
Algorithm 1. Find frequent coarse-grained_itemsets 
Input: (1) THG: A quantized table in which each value of 

bands and Yield is transformed by a set of histogram 
generators {HG0, HG1, …, HGk-1}  
/* each tuple in THG is formated as (Id, coordinate, band1,    
band2, …, bandj, Yield) */. 

(2) sc: Coarse-grained minimum support threshold. 
Output: F: a set of frequent itemsets in THG 

Step1: 
For each bandj and Yield 
If the tuple counts for S

jband α  and 'SYield α satisfy sc. 

then put ( S
jband α , 'SYield α ) into F1; /* F1 is a 1-frequnet 

itemset with pairs of one bandj and Yield */ 
 
Step2: 
For ( A =2 ; 1F −A ≠∅; A ++) 

CA =apriori_antecedent_consequent( 1F −A ) 
  For each tuple t ∈ THG   
   Ct=subset( CA , t) 
    For each candidate c∈Ct  /* Read each tuple and 

count the c.count++ occurrences of each item*/ 
   FA ={c∈Ct |c.count≥ sc } 
return F= F∪A A  
End of Algorithm 1. 
 
Procedure aprioir_antecedent_consequent( 1F −A ) /* 
join_step*/ 
For each itemset θ1∈ 1F −A  

For each itemset θ2∈ 1F −A  

If ((θ1. 'SYield α )=(θ2. 'SYield α )) 

If((θ1.
1

1
Sband α )=(θ2.

1
1
Sband α ))∩((θ1.

2
2
Sband α )= 

θ2.
2

2
Sband α ))∩ … ∩ ((θ1.

2
2

Sband α −
−
A

A ) = 

(θ2.
2

2
Sband α −
−
A

A )) ∩ ((θ1. 1
Sband β
−A ) < (θ2.

Sband γ
A ))  

then {c=( 1
1
Sband α , 2

2
Sband α ,…, 2

2
Sband α −
−
A

A , 1
Sband β
−A , 

Sband γ
A , 'SYield α )/* c is a candidate A -itemset */ 

If has_infrequent_subset(c, 1F −A ) then  delete c; 
else  add c to CA ;} 

return CA ; 
 
Procedure has_infrequent_subset(c, 1F −A )  
For each ( A -1)-subset δ of c 

If δ∉ 1F −A  then  return TRUE; 
return FALSE; 
 
Example 3-4: Again take Example 3-3 as an example; the 
entire original image after these calculations is represented 
in Table 3. Next to obtain coarse-grained spatial association 
rules as shown in Figure 4, apply the mining on the 
association rules from the results of calculations. 
 

Figure 4. Coarse-grained association rules 

• R[193, 255]⇒Yield[193, 255], count=6, CF=1, ID=[1, 2, 3, 4, 5, 6]
• R[65, 128]⇒Yield=[193, 255], count=3, CF=1, ID=[7, 8, 9] 

""  
• R[193, 255], B[193, 255] ⇒Yield[193,255], count=5, CF=1, ID=[1, 2, 

3, 5, 6] 
• R[65,128], G[193,255], B[193, 255] 

⇒Yield[193,255],count=3,CF=1,ID=[7, 8, 9] 
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Step 4: Mining for fine-grained association rules  
The main purpose of this step – Step 4 is to obtain the 

fine-grained association rules. From the mined 
coarse-grained association rules 1 2, , ,R R Rℜ…  in Step 3, 
the following is obtained: 1 2, , ,ID ID IDℜ… . Each IDℜ  then 
contains 1 2

1 2, , dId Id Id
ℜ

…  which record the Id positions of 

these association rules in original data table Torigin. Go back 
to the original data table Torigin, and calculate the count of 
value jt

jband in each band; delete every calculated count 

that is smaller than minimum support count jt
jband , a 

fine-grained association rule is now obtainable. The 
processes are presented in Algorithm 2. 
 
Algorithm 2. Find frequent fine-grained_itemsets 
Input: ℜ : a coarse-grained association rule 

sf: fine-grained minimum support threshold. 
Output: Ff: frequent fine-grained-itemsets 
Let ℜ  be 1

Sband α , 2
Sband α , …, S

jband α ⇒ 'SYield α , 

count= sℜ , CF= CFℜ , IDℜ  , 
Where IDℜ ={Id|Id∈1, 2, …, n×n}; α ∈ {0, 2, …, k-1 }, k 
is the number of Histogram Generator 
Step 1: Let Ttemp be a temp table in which each tuple comes 

from those in Torigin w.r.t. IDℜ . Each tuple in Ttemp 
is formated as (Id, coordinate, band1, band2, …, 
bandj, Yield.  

Step 2: 
Insert into Fj(band1, band2, …, bandj, count)    
Select Ttemp.band1, Ttemp.band2, …, Ttemp.bandj, count(*) 
From Ttemp 
Group by Ttemp.band1, Ttemp.band2, …, Ttemp.bandj 
Having count(*)>=sf 
End of Algorithm 2. 

 
Example 3-5： Again take Example 3-4 as an example; for 
instance on the first association rule R[193, 255]⇒Yield[193, 255], 
count=6, CF=1, ID=[1, 2, 3, 4, 5, 6] in Figure 4, its ID is [1, 
2, 3, 4, 5, 6]. Back to the original table – Table 2, do a 
separate calculation on the original data in Band R and 
Yield, providing that either of which Id is only 1, 2, 3, 4, 5, 
6. Whichever case satisfies the minimum support count 

brings in the fine-grained association rule R255⇒ Yield255. 
Another instance on the last association rule R[65, 128], G[193, 

255], B [193, 255] ⇒ Yield [193,255], count=3, CF=1, ID=[7, 8, 9], 
similar calculation as in the previous instance goes for the 
ID being [7, 8, 9]; in this case, the fine-grained association 
rule R100, G200, B255⇒Yield255 is obtained. 
 
4. ADAPTIVE TWO-PHASE SPATIAL ASSOCIATION 

RULES MINING METHOD 
The two-phase data mining of spatial association rules 

in section 3 can improve the Apriori method in terms of its 
efficiency. However during the image processing, 
partitioning the image into parts can improve its efficiency; 
to this point, the concept of image blocking is incorporated 
onto the coarse-grained two-phase data mining of spatial 
association rules. Image blocking performs the mining on 
each of the disjoining blocks partitioned from an image. 
The motive of taking on the image blocking is due to the 
inter-pixel redundancy in image data [20]. That means, the 
occurrences of neighboring image points redundancy is 
quite high; in other words, there is a higher possibility of 
more frequent itemsets. Therefore, the adaptive two-phase 
data mining of spatial association rules is to eliminate the 
blocks which do not produce frequent itemsets to improve 
its efficiency through image blocking. 
4-1. Flowchart of the adaptive two-phase data mining of 
spatial association rules 

Our enhanced method has been made from some 
improvements over the method by Savasere et al. [19]. 
Figure 5 is the flowchart of coarse-grained association rules 
through image blocking. Exploration of the frequent 
itemsets in coarse-grained association rules is made in four 
main steps. First step is to partition an image. Second step 
is to produce local frequent itemsets and record local 
non-frequent itemsets at the same time. Third step is to 
group each local frequent itemsets into global candidate 
itemsets. Fourth step is to add together the support count in 
global candidate itemsets as well as in non-frequent 
itemsets to be the final support count in global candidate 
itemsets. When bigger than the minimum support count, a 
global frequent itemsets is produced. Next sub-chapter will 
put more emphasis on each of the four steps. 

Divide  Images into n
partitions

Find the frequent itmesets
local to each partition

(1 scan)

Find global freuent
itemsets among local

frequent itemsets

Compute final Support
count  of global frequent

itemsets among  local
frequent  itemsets

Mining Coarse Association Rule
  Coarse Minimum Support

Coarse Minimum Confidence

Coarse Assocation Rules

 
Figure 5. Adaptive two-phase association rule flowchart for RSI data mining 

 
4-2. Procedures of the enhanced two-phase data 
mining of spatial association rules 
Step 1: Partition the image 
According to the mined coarse-grained association 

rules by Histogram Generator in Step 3 of Chapter 3, 
THG is the data table through HGs quantization of 

originT . Perform data mining on THG to explore the 
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coarse-grained association rules. And the entire 
mining process is shown in Algorithm 3. First is to 
partition into n number of disjoining blocks 
{ 1 2, , , nP P P… }. Divide the minimum support count 
by the count in data table THG. Multiply what’s left in 
the previous calculation by the count in Pi to obtain 
the minimum support count in each block 

( c
ps =

HG

c

T
s × ip ), where c

ps  is the minimum 

support count in the block, HGT  is the count of data 

table THG, sc is the minimum support count and ip  

is the count in the block. 
Example 4.1: Table 4 is an image of 8×2 pixels, after 
which the data table THG is made from quantization by 
four HGs on bands R, G, B and Yield, respectively. 
The image is partitioned into four small blocks (n=4) 
in which block 1P  consists of {1, 2, 3, 4}, block 2P  

of {5, 6, 7, 8}, block 3P  of {9, 10, 11, 12}, and 
block 4P  of {13, 14, 15, 16}. Whereas minimum 

support count (
cs ) is 10, the minimum support count 

in the block is 
c
ps = c

H G
s

T

× 1p = c

HG
s

T
× 2p = c

HG
s

T
× 3p =

HG

c

T
s ×

4p  = 4
16
10

× =2.5. 

Table 4. Four partitioned blocks 8×2 image data table 
Id coordinate R G B Yield
1 0,0 3 3 3 3 
2 0,1 0 0 0 3 
3 1,0 3 3 3 3 
4 1,1 3 3 3 3 
5 2,0 3 3 3 3 
6 2,1 0 0 0 3 
7 3,0 0 0 0 3 
8 3,1 1 1 1 3 
9 4,0 3 3 3 3 
10 4,1 3 3 3 3 
11 5,0 3 3 3 3 
12 5,1 3 3 3 3 
13 6,0 3 3 3 3 
14 6,1 3 3 3 3 
15 7,0 3 3 3 3 
16 7,1 3 3 3 3 

 
Step 2: Exploration of local frequent itemsets in 

each block 
Step2.1: Calculate local frequent 1-itemsets ( 1

iF ) for 

each iP . And each item in local frequent 1-itemsets 
is represented as I( S

jband α , 'SYield α , count) because 

the itemsets in 1
iF  can be represented as an 

association rule that consists of a antecedent and a 
consequent. For the association rule by the itemsets I, 
its antecedent is represented as I. S

jband α  and 

consequent as I. 'SYield α . I.count is the support count 

of the itemset. For example, I( 0 1,R Yield , 5) 

represents the color value of R as 0, the color value of 
Yield as 1 and the support count equals to 5. 

On the other hand, record all the local 
non-frequent 1-itemsets that are smaller than the 
minimum support count in the block onto 1

iNF . 
Similarly, the format of local non-frequent 1-itemsets 
is I( S

jband α , 'SYield α , count), where I. S
jband α  is 

represented as the antecedent, I. 'SYield α  as the 
consequent and I.count as the support count of the 
itemsets. 
Step2.2: Assume θ1∈ 1

iF
−A

 and θ2∈ 1
iF
−A

 where θ1≠θ2. 

To produce local frequent A -itemsets ( iFA ), first step 

has to consider whether or not θ1. 'SYield α  equals to 

θ2. 'SYield α . And if they equal to each other, they are 
joined together to produce local candidate A -itemsets 
( iCA ). In local candidate A -itemsets, each format of 

the itemsets is I( 1
1
Sband α , 2

2
Sband α , …, 2

2
Sband α −
−
A

A , 

1
Sband β
−A , Sband γ

A , 'SYield α , count); of which 

I( 1
1
Sband α , 2

2
Sband α , …, 2

2
Sband α −
−
A

A , 1
Sband β
−A , 

Sband γ
A , 'SYield α , count) is the antecedent, 

I. 'SYield α  is the consequent and count is the support 
count=min(θ1.count, θ2.count) of these established 
association rules in the local candidate itemsets. When 
the support count is larger than the minimum support 
count in the block, local frequent A -itemsets ( iFA ) 
will be produced. local frequent A -itemsets are 
formatted as I( 1

Sband α , 

2
Sband α , …, Sband α

A , 'SYield α , count). Similarly, 

I. 1
Sband α , I. 2

Sband α , …, I. Sband α
A  is represented as 

the antecedent, I. 'SYield α  as the consequent and 
I.count as the support count of the itemsets. For 
example, θ1=( 0R , 0G , 1Yield ,4) ∈ 2

iF ，

θ2=( 0R , 0B , 1Yield , 3) ∈ iF2 . When 

θ1. 1Yield =θ2.
1Yield , I( 0R , 0G , 0B , 1Yield , 3) will be 

produced and support count=min(4, 3); again when 
the support count is larger than the minimum support 
count in the block, the global frequent itemsets of 
I( 0R , 0G , 0B , 1Yield , 3) will be produced. The color 
value of R is 0, of G is 0, of B is 0, of Yield is 1, and 
the support count is equal to 3.  

On the other hand, record all the local 
non-frequent A -itemsets that are smaller than the 
minimum support count in the block onto 1

iNF . 
Similarly, the format of local non-frequent A -itemsets 

is I( 1
Sband α , 2

Sband α , …, Sband α
A , 'SYield α ,count), 

where I.( 1
Sband α , 2

Sband α , …, Sband α
A ) is 

represented as the antecedent, I. 'SYield α  as the 
consequent and I.count as the support count of the 
itemsets. 
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Example 4.2: Take Table 9 for example, the block 
3P  in which local frequent 1-itemsets are produced, 

(R3, Yield3, 4), (G3, Yield3, 4) and (B3, Yield3, 4) are 
also produced. Furthermore, the local frequent 2- 
itemsets are (R3, G3, Yield3, 4) where count=4 
obtained from min(4, 4). 

On the other hand, no local frequent itemsets 
are produced in the block 2P  because the support 
count of the itemsets is smaller than the minimum 
support count in the block. Our method records the 
itemsets onto the local non-frequent itemsets so as to 
produce the local non-frequent itemsets such as (R3, 
Yield3, 1), (G3. Yield3, 1), and (R3, G3, Yield3, 1). 

  
Step 3: Composition of a global candidate itemsets 

from each local frequent itemsets 
First step is to incorporate the local frequent 

A -itemsets 1 2, , , nF F FA A A…  in each block into a global 
candidate A -itemsets ( CA ). Second is to calculate the 
support count in CA ; that is, 

CA .count= 1FA .count+ 2FA .count+…+ nFA .count.  
 

Example 4.3: In Table 9, the local frequent 3-itemsets 
in 1P  are (R3, G3, B3, Yield3, 3), and the local 
frequent 3-itemsets in 3P  and 4P  are (R3, G3, B3, 
Yield3, 4). Incorporation of both comes the global 
candidate 3-itemsets which are (R3, G3, B3, Yield3, 11), 
where count=(3+4+4)=11. 
 
Step 4: Calculation of the final support counts in 
global candidate itemsets for establishing the global 
frequent itemsets 

 Adding together the established global 
candidate itemsets 1 2, , ,C C CA…  in Step 3 and the 
support count in each local non-frequent itemsets 
( iNFA ) yields CA .count= CA .count+ iNFA .count, and 
the final support count in the global candidate itemsets 
can be produced. If the support count is larger than the 
minimum support count (sc), then they are the global 
frequent itemsets. 

 
Example 4.4: Again take Table 9 as an example, the 
global candidate itemsets (R3, G3, B3, Yield3, 11) are 
produced in Step 3. There are local non-frequent 
itemsets such as (R3, G3, B3, Yield3, 1) in 2P . Thus 
the final global candidate itemsets that are produced 
are (R3, G3, B3, Yield3, 12), where count=(11+1)=12 
that is larger than the minimum support count 10. So 
the global frequent itemsets (R3, G3, B3, Yield3, 12) are 
produced. 
 
Algorithm 3. Image partition for find frequent 
coarse-grained itemsets 
Input: (1) THG: A quantized table in which each value 

of bands and Yield is transformed by a 
set of histogram generators {HG0, 
HG1, …, HGk-1}  

/* each tuple in THG is formated as 
(Id, coordinate, band1, band2, …, 
bandj, Yield) */. 

(2) sc: Coarse-grained minimum support 
threshold. 

(3) n : Number of disjoin partitions 
Output: F: a set of frequent itemsets in THG 

Step 1: 
Let iP is a partitioned table from THG, 

c
ps = c

HG
s

T

× ip  is coarse-grained minimum support 

threshold for each partition table. 
For each partition iP   /* for i=1, 2, …, n*/ 

iFA =gen_large_itemsets( iP , c
ps ) 

 
Step 2:  /* Merge frequent itemsets of each 

partition and Compute counts of 
frequent-itemsets*/ 

For ( A =1; iFA ≠∅, i=1, 2, …, n; A ++) 

CA =∪i=1, 2, …, n
iFA  //Merge phase 

CA .count= 1FA .count+ 2FA .count+…+ nFA .count 
 
Step 3:  /* Compute final counts of 
frequent-itemsets */ 
For all candidates CA  

For each iNFA in iP  

CA .count= CA .count+ iNFA .count 
End-For  
F={c∈CA  | c.count>=sc } 

End-For 
return F= F∪A A  
End of Algorithm 3. 
 
Procedure gen_large_itemsets( iP , c

ps ) 
Step1: 
For each bandj and Yield 

If the tuple counts for 
S
jband α  and 'SYield α satisfy c

ps . 

then put ( S
jband α , 'SYield α , count) into 1

iF  

else 
put ( S

jband α , 'SYield α , count) into 1
iNF ; 

End-For 
Step 2: /* join_step*/ 
For ( A =2 ;

1

iF
−A
≠∅; A ++) 

For each itemset θ1∈ 1

iF
−A

 

For each itemset θ2∈ 1

iF
−A

 

If ((θ1. 'SYield α )=(θ2. 'SYield α )) 
If 

((θ1.
1

1
Sband α )=(θ2.

1
1
Sband α ))∩((θ1.

2
2
Sband α )

=(θ2.
2

2
Sband α ))∩…∩ ((θ1.

2
2

Sband α −
−
A

A  

=(θ2.
2

2
Sband α −
−
A

A ))∩((θ1. 1
Sband β
−A )<(θ2.

Sband γ
A )) then { ic  = ( 1

1
Sband α , 2

2
Sband α , …, 

2
2

Sband α −
−
A

A , 1
Sband β
−A , Sband γ

A , 'SYield α ) 

/* ic is a candidate A -itemset in iP */ 
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If has_infrequent_subset(ci,
iF 1−A ) then delete ci; 

else ci.count=min(θ1.count,θ2.count) 
If ci.count>= c

ps  then iFA = iFA ∪ {ci} 

else iNFA = iNFA ∪ {ci} 

return iFA ; 
   
Procedure has_infrequent_subset(ci; 1

iF −A )  
/* prune_step*/ 
For each ( A -1)-subset δ of ci 

If δ∉ 1
iF −A then 

return TRUE; 
return FALSE; 
 

5. EXPERIMENT AND DISCUSSION 
5-1. Experimental results from the two-phase data 
mining of spatial association rules 

To conduct the experiment, there are k numbers 
of different images prepared. Each of these images is 
50,000 pixels. And with the various kinds of 
Histogram Generators, an observation can be made on 
the increased efficiency of the two-phase data mining 
of spatial association rules. Our observation will be 
based on 4, 8, 16, 32, 64 and 128 Histogram 
Generators. For a certain dimension such as 4 HGs, 
four color values of HG0, HG1, HG2 and HG3 can be 
defined and their inter-color values are [0, 64], [65, 
128], [129, 192] and [193, 255], respectively. 

Figure 6 is a time comparison chart made for ten 
different images in different variances, under the 
circumstance that color count is 1000, the minimum 
support count is 40 and the minimum confidence is 
0.001. Under the conditions that the variance is below 
23.79 and the pre-determined Histogram Generator by 
the two-phase data mining is below 128, the time 
required for the data mining is obviously less 
compared to the Apriori. Under the conditions that the 
variances are between 97.51~ 828.681 and the 
pre-determined Histogram Generator by the two-phase 
data mining is below 16, the time required for the data 
mining is obviously less compared to the Apriori. With 
the increasing degrees of variance, our method may 
not be as effective. Therefore in observation of image 
variance, the two-phase data mining of spatial 
association rules is more effective compared to the 
Apriori, providing that the image variances are not as 
significant. 

In addition to the above, our method also 
focuses on the effect from images of different pixels 
and color counts upon Histogram Generator counts. 
During the experiment, the defined minimum support 
count is 40 and the minimum confidence is 0.001. 
Figure 7 shows five images of different color counts 
and variances between 0.24~0.28. Figure 8 shows five 
images of different color counts and variances 
between 475.2~483.8. Figure 9 shows five images of 
different color counts and variances between 733~745. 
Vertical axis is the amount of time required. From the 
figures, the two-phase data mining of spatial 
association rules shows more promising effectiveness 
compared to the Apriori. By means of the results 
obtained from Figure 7, 8 and 9, Figure 10 allows the 
users to mine the spatial association rules according to 
the effective Histogram Generator index. This is to say, 

the users can pick on the Histogram Generator counts 
depending on images of different color counts. Say, 
when the color count in an image is 400, the users can 
pick on the Histogram Generator counts that are below 
64 to establish more effective spatial association rules. 

0

5000

10000

15000

20000

25000

0.47 23.8 97.5 276 456 617 829 1051 1158 1886

Variation

Ex
ec

ut
io

n 
tim

e(
se

c.)

4

8

16

32

64

128

Apriori

Figure 6. Relationship between different variance and 
time 

 

0

5000

10000

15000

20000

25000

200 400 600 800 1000

Color Count

Ex
ec

ut
io

n 
tim

e 
(s

ec
.) 4

8
16
32
64
128
Apriori

Variation=0.24~0.28

 
Figure 7. Execution time comparison between 

different HGs for some color count 
(variation=0.24~0.28) 
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Figure 8. Execution time comparison between 

different HGs for some color count 
(variation=475.23~483.88) 
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5-2. Experimental results of adaptive two-phase 
data mining of spatial association rules 

Experimental analysis is made in section 4 on 
the adaptive two-phase data mining of spatial 
association rules. The experiment is mainly divided 
into two parts: First part is the time-related ratio 
between the adaptive two-phase data mining which 
incorporates the Histogram Generator as well as 
blocking and the Apriori (HG w.r.t. Partition)/Apriori. 
Second part is the time-related ratio between the 
adaptive two-phase data mining, the two-phase data 
mining of spatial association rules and the Apriori. 

Figure 11 shows the time-related ratio between 
the adaptive two-phase data mining and the Apriori on 
five 50,000 pixels images of different color counts. 
The vertical axis is the time ratio (HG w.r.t. 
Partition)/Apriori. The time ratio less than 1 indicates 
that our method is effective. From Figure 11, the 
adaptive two-phase data mining under different color 
counts shows the time ratio being significantly less 
than 1; this is to day, the adaptive two-phase data 
mining is more effective than the Apriori.  

Figure 12 shows the time-related ratio between 
the adaptive two-phase data mining which 
incorporates the Histogram Generator count that is 
128 as well as blocking and the Apriori on five 50,000 
pixels images under different color counts. Figure 12 
also shows the time ratio between the two-phase data 
mining which incorporates the Histogram Generator 
that is 128 but excludes the blocking and the Apriori. 
When the time ratio is less than 1, it implies that the 
adaptive two-phase data mining is effective. From the 
Figure, the adaptive two-phase data mining yields the 
time ratio that is significantly less than 1; in other 
words, the adaptive two-phase data mining can 
improve the two-phase data mining of spatial 
association rules on its effectiveness.  

Figure 13 is the time-related ratio between the 
adaptive two-phase data mining which incorporates 
the Histogram Generator as well as blocking and the 
Apriori on five 50,000 pixels images under different 
variances. The vertical axis is the time ratio (HG w.r.t. 
Partition)/Apriori. When the time ratio is less than 1, it 
implies that the adaptive two-phase data mining is 
effective. From the Figure, the adaptive two-phase 
data mining under different variances yields the time 
ratio that is significantly less than 1; in other words, 
the adaptive two-phase data mining is more effective 
than the Apriori. 

Figure 14 is the time-related ratio between the 
adaptive two-phase data mining which incorporates 
the Histogram Generator count that is 128 as well as 
blocking and the Apriori. It also shows the time ratio 
between the two-phase data mining which 
incorporates the Histogram Generator count that is 
128 but excludes the blocking and the Apriori. When 
the time ratio is less than 1, it implies that the adaptive 
two-phase data mining is effective. From the Figure, 
the adaptive two-phase data mining requires 
significantly less amount of time; in other words, 
image blocking in the first and coarse-grained 
association rules in the later are able to enhance the 
two-phase data mining in its effectiveness. 

The biggest difference between the adaptive 
two-phase data mining and blocking [19] lies in that 
the method[19] must scan the database twice to obtain 
the final minimum support count in the global 

frequent itemsets and the adaptive two-phase data 
mining stores part of the data into the global 
non-frequent itemsets, so that there will be no need to 
go back and scan the database for the calculation of 
final minimum support count in the global frequent 
itemsets. Instead, only the adding calculation in the 
global non-frequent itemsets is required. 

 Figure 15 is a comparison chart between the 
database storage and the storage for the adaptive 
two-phase data mining to record the local 
non-frequent itemsets. During the entire experiment, 
the data counts are 1000k, the minimum support 
counts are 2000, the minimum confidence is 0.001, the 
partitioned block counts are 10 and the image 
variances are 6335.79~6522.68. From five images of 
different color counts in Figure 15, storage for the 
adaptive two-phase data mining to record the global 
non-frequent itemsets is far less than database storage; 
in other words, the adaptive two-phase data mining 
requires less storage because it does not have to 
account for the time on another database scanning. 
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6. CONCLUSIONS 
Our proposed two-phase data mining method is 

essentially effective for the applications of data 
mining on remotely sensed images. The first step is to 
quickly find the coarse-grained association rules by 
Histogram Generator. In turn, find the fine-grained 
association rules from the previously mined 
association rules. This is especially efficient when a 
large amount of remotely sensed images is to be 
mined. Besides, the more concern will be placed on 
analysis of different types of images so that the users 
are still able to effective obtain the spatial association 
rules by our Histogram Generator index. To sum up, 
the mechanism of our method is more flexible and 
effective for data mining in images. Adaptive 
two-phase spatial association rules mining method 
conducts the idea of partition on an image for 
efficiently quantizing out non-frequent patterns and 
thus facilitate the following two phase process. 
 

7. REFERENCES 
[1] R. Agrawal, and R. Srikant (1994), “Fast Algorithms 

for Mining Association Rules in Large Database,” 
Conference of Very Large Data Bases, Santiago, 
Chile, pp. 487-499. 

[2] S. W. Changchien, and T. C. Lu (2001), “Knowledge 
Discovery from Object-Oriented Databases Using 
an Association Rules Mining Algorithm,” 
Processing of the 5th International Conference on 
Knowledge-Based Intelligent Information 
Engineering System & Allied Technologies 6, 7, &8. 

[3] E. Clementini, P. D. Felice, and K. Koperski (2000), 
“Mining Multiple-Level Spatial Association Rules 
for Objects with a Broad Boundary,” Data and 
Knowledge Engineering, Vol. 34, pp. 251-270. 

[4] A. Denton, W. Perrizo, Q. Ding, and Q. Ding (2002), 
“Efficient Hierarchical Clustering of Large Data 
Sets Using P-trees,” Proceeding of 15th 
International Conference on Computer Applications 
in Industry and Engineering, San Diego, CA, pp. 
138-141. 

[5] Q. Ding, Q. Ding, and W. Perrizo (2002), “Decision 
Tree Classification of Spatial Data Streams Using 

Peano Count Trees,” Proceeding of ACM 
Symposium on Applied Computing, Madrid, Spain, 
pp. 413-417. 

[6] Q. Ding, Q. Ding, and W. Perrizo (2002), 
“Association Rule Mining on Remotely Sensed 
Images Using P-trees,” Proceedings of PAKDD 
2002, pp. 66-79. 

[7] M. Ester, A. Frommelt, H. P. Kriegel, and J. Sander 
(1998), “Algorithms for Characterization and Trend 
Detection in Spatial Databases,” Proceeding of 4th 

International Conference on Knowledge Discovery 
and Data Mining, Menlo Park, CA, pp. 44-50. 

[8] M. Ester, S. Gundlach, H. P. Kriegel, and J. Sander 
(2000), “Spatial Data Mining: Database Primitives, 
Algorithms and Efficient DBMS Support,” Data 
Mining and Knowledge Discovery, Vol. 4, pp. 
193-216. 

[9] M. Ester, and H. P. Kriegel (1997), “Spatial Data 
Mining: A Database Approach,” Processing 5th Int. 
Symposium on Large Spatial Databases, Berlin, pp. 
47-66. 

[10] M. Ester, H. P. Kriegel, and J. Sander (1999), 
“Knowledge Discovery in Spatial Databases,” Conf. 
of 23rd German on Artificial Intelligence, Bonn, 
Germany, pp. 61-74. 

[11] R. H. Guting (1994), “An Introduction to Spatial 
Database Systems,” Conference of Very Large Data 
Base, pp. 357-400. 

[12] J. Han, and Y. Fu (1995), “Discovery of 
Multiple-Level Association Rules from Large 
Databases,” Processing 21th International 
Conference Very Large Data Bases, pp. 420-431. 

[13] D. Holt, and M. Chung (2002), “Mining Association 
Rules Using Inverted Hashing and Pruning,” 
Information Processing Letters, Vol. 83, No. 4, pp. 
211-220. 

[14] K. Koperski, and J. Han (1995), “Discovery of 
Spatial Association Rules in Geographic 
Information Databases,” Proceeding Fourth 
Advances in Spatial Databases Symp. Springer, 
Berlin, pp. 47-66. 

[15] K. Koperski, J. Han, and N. Stefanovic (1998), “An 
Efficient Two-Step Method for Classification of 
Spatial Data,” Proceeding of International 
Symposium on Spatial Data Handling, Vancouver, 
BC, Canada, pp. 45-54. 

[16] W. Lu, J. Han, and B. C. Ooi (1993), “Discovery of 
General Knowledge in Large Spatial Databases,” 
Proceeding of Far East Workshop on Geographic 
Information Systems, World Scientific, Singapore, 
pp. 275-289. 

[17] J. S. Park, M. S. Chen, and P. S. Yu (1995), “An 
Effective Hash-Based Algorithm for Mining 
Association Rules,” Proceeding of  
ACM-SIGMOD Conference Management of Data, 
San Jose, CA, pp. 175-186. 

[18] W. Perrizo, Q. Ding, Q. Ding, and A. Roy (2001), 
“Deriving High Confidence Rules from Spatial Data 
using Peano Count Trees,” Proceedings of 
International Conference on Web-Age Information 
Management, Springer-Verlag, Lecture Notes in 
Computer Science 2118, pp. 91-102. 

[19] A. Savasere, E. Omiecinski, and S. Navathe (1995), 
“An Efficient Algorithm for Mining Association 
Rules in Large Databases,” Processing 21st VLDB 
Conference, pp. 432-444. 

[20] K. Sayood (1996), “Introduction to Data 
Compression,” Morgan Kauffman Publishers, San 
Fransisco, CA. 

[21] Remote Sensing Tutorial Available 
http://rst.gsfc.nasa.gov/Front/tofc.html 

JCS&T Vol. 6 No. 1                                                                                                                                 April 2006

45


	r-a2: Received: Nov 2005. Accepted: Feb. 2006.


