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ABSTRACT

The metric spaces model formalizes the similarity search
concept in nontraditional databases. The goal is to build
an index designed to save distance computations when an-
swering similarity queries later.

A large class of algorithms to build the index are based
on partitioning the space in zones as compact as possible.
Each zone stores a representative point, called center, and
a few extra data that allow to discard the entire zone at
query time without measuring the actual distance between
the elements of the zone and the query object. The way in
which the centers are sel ected affects the performance of the
algorithm.

In this paper, weintroduce two new center selection tech-
niques for compact partition based indexes. These tech-
niques were evaluated using the Geometric Near-neighbor
Access Tree (GNAT). We experimentally showed that they
achieve good performance.

Keywords: Databases, Metric Spaces, Smilarity Search,
Index, Centers Selection.

1 INTRODUCTION

The similarity or proximity search concept is fre-
quently found in diverse topics in computer science,
i.e. voice and image recognition, text compression,
computational biology, data mining, etc. In [6] is
shown that the proximity search problem can be ex-
pressed as follows: given a set X of objects and a dis-
tance function d defined among them, that quantifies
their similitude, the aim is to retrieve all the elements
similar to a given one. This function d satisfies the
properties required to be a distance function: posi-
tivity (d(z,y) > 0), simetry (d(z,y) = d(y, z)) and
triangular inequality (d(z,y) < d(z,z) + d(z,v)).

*This work has been supported by Project 22F/314, Universidad
Nacional de San Luis
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The pair (X, d) is called metric space. A finite sub-
set U C X, which will be called database, is the set
of objects where the search takes place.

One of the typical queries over this new database
model is the range query, denoted by (¢, 7)q. Given
aquery g € X and a tolerance radius r, a range query
consists in retrieving all the objects from the database
U that are within a distance r from ¢, thatis: (¢, r)q =
{uel:d(qgu) <r}.

The total query time T can be computed
as T = #evaluationsof d x complexity(d) +
extra CPU time + 1/O time. In many applications, the
evaluation of function d is so costly that the other
terms in the formulae can be neglected. This is the
complexity model used in this work; therefore, the
complexity measure will be the number of evaluations
of the distance function d.

A range query can be trivially answered by an
exhaustive examination of the database. Unfortu-
nately, this is generally very costly in real applica-
tions, (O(n) distance evaluations where n = |U|). To
avoid this situation, the database is preprocessed us-
ing an indexing algorithm whose aim is to build a data
structure or index, designed to save distance evalua-
tions at query time.

In [6] the authors present a unifier development for
all the existing solutions in this topic. In that survey
the authors state that the metric spaces indexing algo-
rithms are based on, first, partitioning the space into
equivalence classes and, second, a subsequent indexa-
tion of each class. Afterwards, at query time, some of
these classes can be discarded using the index and an
exhaustive search takes place only on the remaining
classes.

The difference among the existing indexing algo-
rithms is the way they build up the equivalence re-
lation. Basically, two groups can be distinguished:
pivot based algorithms and compact partition based
algorithms. The pivot based algorithms [2, 5, 4] use
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the distance between the database elements and a set
of preselected elements or pivots in order to define
the equivalence relationship. Using this criterion, two
elements are equivalent if they are at exactly the same
distance from all the pivots. The compact partition
based algorithms|[8, 3, 7] build the equivalence rela-
tion based on the proximity of the elements to a pre-
defined set of them, called centers. In this sense, two
elements are equivalent if the closest center to each
of them is the same center ¢. Even though the way
the the centers are selected affects the performance of
the index, most of these algorithms choose them ran-
domly.

In this work we have studied metric space indexing
using compact partition based algorithms. Specifi-
cally, we have focused on the index called Geometric
Near-neighbor Access Tree (GNAT) [3] aiming to de-
sign center selection techniques that improve its per-
formance in answering range queries. The developed
techniques were experimentally evaluated comparing
their results with the naive center selection, i.e. ran-
dom selection.

This paper is organized as follows: section 2
presents a brief explanation of metric spaces indexing
algorithms. In section 3 the GNAT index is explained
in detail. Sections 4 and 5 introduce and develop the
center selection techniques proposed in this work. Fi-
nally, in section 6, the conclusions and future work
are presented.

2 SIMILARITY SEARCH ALGORITHMS

As it was mentioned in the introduction, the metric
spaces indexing algorithms can be classified into pivot
based and compact partitions based. The following
paragraphs give a brief explanation of each of them.

Pivot based algorithms. The key idea behind the
pivot based algorithms is as follows. At index-
ing time, k pivots p1,ps2,---,pr are chosen from
the metric space X and each object u € U is
mapped to a k-dimensional vector which repre-
sents the respective distances to the pivots, that is,
5(“‘) = (d(uapl)ﬂd(uaPZ)a"'ad(uapk))' When a
range query (q,r)q is issued, the triangular inequal-
ity is used together with the pivots in order to fil-
ter out elements in the database, without actually
evaluate each distance to the query ¢. To do this,
6(q) = (d(q,p1),d(q,p2), .-, d(g, px)) is computed;
if |d(¢q,p:) — d(u,p;)| > r holds for any for any p;
then, by the triangular inequality, d(g,w) > r with-
out actually evaluating d(q, u). The distance from the
query q to the elements not discarded by the previous
condition is then evaluated to determine whether they
belong or not to the answer.

Compact partitions based algorithms. In these
case, the key idea is to split the space in zones as
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compact as possible. A set of centers ¢y, co, - -, ck
is chosen and each element in the space is associ-
ated to its closest center ¢;. The set of the elements
closer to the center ¢; than to any other center forms
the class [¢;]. There are many possible criteria to dis-
card classes when the index is used to answer a query;
the most popular ones are:

a. Hiperplane criterion: it is the most basic and
the one that best expresses the idea of compact parti-
tion. Basically, if ¢ is the center of class [¢] (i.e. the
center closest to ¢) then, the ball with center ¢ does
not intersect [¢;] if d(g,c) +r < d(g, ¢;) — 7.

b. Covering radius criterion: in this case, the
method tries to bound the class [¢;] by considering a
ball centered in ¢; that contains all the elements of U
which belong to the class. We define the covering ra-
dius of c € U as cr(c) = max ey d(c,u). Then
[¢;] can be discarded if d(q, ci) — r > cr(c;).

One of the main issues found in the design of ef-
ficient indexing techniques is what is known as the
curse of dimensionality. The dimensionality concept
is related to the effort needed to search for an element
in a given metric space. The intrinsic dimensional-

ity of a metric space X is defined in [6] as p = %
where . and o2 are the mean and variance of the dis-
tance histogram of X. This states that, as the intrin-
sic dimensionality increases, so do the mean, but the
variance of the histogram decreases, i.e. the distance
histogram concentrates around its mean and this cre-

ates a negative effect on indexing algorithms.

3 GEOMETRIC NEAR-NEIGHBOR ACCESS
TREE

This index, proposed by Sergey Brin in [3], is an ex-
tension of the Generalized Hiperplane Tree (GHT) [8]
to an m-ary tree. The construction of a GNAT of arity
m can be summarized as follows: for the first level m
centers {cy,...,cm}, are chosen from X. Then, the
set U,, formed by all the objects of U closer to ¢; than
to any other center c;, is related to each center ¢;:

Ue, = {z €eU/d(ci,z) < d(cj,x), Vj=1...m, j#i}

If |[U.,| > m, a GNAT is recursively created as a
child of node ¢;, otherwise a terminal node is built
using the elements of U.,.

The GNAT stores at each node an O(m?) size table
pij = [minyey, (¢;, u), max,ey,; (¢, u)], that keeps
minimum and maximum distances from each center
c; to each set U,,. At query time, this information is
used together with the triangular inequality, to limit
the search. Given a range query (g,7)q, ¢ iS cOm-
pared against some center ¢;. Then, any other cen-
ter ¢; (and their corresponding sets U,;) such that
[d(q,¢;) — r,d(g,¢;) + r] does not intersect p; ; is
discarded (see figure 1) . This process is repeated un-
til no center can be discarded. Then, the search re-
cursively continues in the remaining subtrees. During
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Figure 1: Pruning branches using p;;. In this case, Uc, can be
discarded since d(gq,¢;) + 7 < minmeucj d(c;, ).

this process, all the centers ¢; that satisfy d(c;,q) < r
are added to the result.

The arity chosen for the construction of the GNAT
strongly influences its performance. In some metric
spaces, a high arity can be a good choice, while for
some others, a low arity can result in better perfor-
mance [1]. Furthermore, the technique used to select
the centers during the construction of the GNAT also
affects its efficiency at query time. This is the reason
because in this work we have focused in the study and
design of center selection techniques that improve the
index performance at query time.

4 CENTER SELECTION TECHNIQUES

The most sensible feature in a metric space is its geo-
metry, i.e. how the data is distributed. The know-
ledge of this underlying structure of the dataset is very
useful in the design of indexing algorithms. More
precisely, the knowledge of how they are distributed
and clustered helps in identifying the zones where the
search becomes harder.

One way to visualize the data distribution of the
metric space is using distance histograms. Given a
metric space (X, d) and an element p € X, the lo-
cal histogram respect to the reference point p, is the
distribution of distances from p to every x € X’ (see
figure 2).

In [1] the authors define and characterize the con-
cept of hard and soft kernel of a metric space. The
hard kernel is formed by those elements which lay in
a densely populated zone of the metric space; on the
other hand, the soft kernel is formed by the rest of the
elements of the metric space. In the mentioned work,
the authors also show the algorithm to calculate the
hard kernel of a metric space. That algorithm basi-
cally consists in intersecting the middle zone of local
histograms for several different reference points p.

Considering this ideas, we have designed two tech-
niques for center selection. One of them consists in
selecting the centers from elements which belong to
the soft kernel and the other one does it picking ele-
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Figure 2: Example of the local histogram with respect to p.
Here, j = |{z/d(p, z) = i}|

ments from the hard kernel. In both cases, we did
not actually calculate the kernels of the metric space
through distance histogram intersection (as suggested
in [1]), but we worked at each step of the selection
only with the local histogram of the last chosen cen-
ter. These ideas are further explained as follows:

Closer Element(CE). The first center ¢; is ran-
domly chosen. The second center is then chosen from
the zone that would be considered soft kernel with
respect to ¢, i.e. if the histogram has Gauss bell
shape, the elements would be chosen from its ex-
tremes. In order to achieve this, the local histogram
of ¢, is built and the closest element in the histogram
is chosen to be the second center co. In general, the
center ¢;,1 would be the element closest to ;.

High Density Zone (HDZ). In this technique also,
the first center ¢; is chosen randomly. Once ¢; has
been selected, the center ¢; 1 is chosen from the zone
that ¢; would consider as its hard kernel. In order to
achieve this, the local histogram for ¢; is computed
and an element from the central zone of the ¢; local
histogram is selected as the center ¢; 1. This zone is
the most densely populated in the histogram, if it is
Gauss bell shaped.

According to the guideline provided in [1], the high
density zone of elements can be determined using the
mean in the local distance histogram for ¢;. The idea
is to select as center ¢;;1 an element whose distance
to ¢; lies in the interval [ — z, u + ], where p is
the mean of the local histogram for ¢; and = is an
integer number. The most convenient value for = was
experimentally obtained as explained in section 5.

5 EXPERIMENTAL RESULTS

The experiments were performed over word dictionar-
ies using the edit distance (also called Leveshtein dis-
tance) as distance function. This function is discrete
and computes the minimum number of character in-
sertions, deletions and replacements needed to make



JCS&T Vol. 7 No. 1

GNAT 16 / HDZ
13000 T T

Di stance eval uation

GNAT 32 / HDZ
12000 T T

11000 %.
10000 &
9000}
8000 |
7000

6000 -

Di stance eval uations

5000

4000

Figure 3: Varying  in HDZ selection for arities 16 and 32.

two strings equal. This distance is commonly used in
information retrieval, signal processing and computa-
tional biology applications.

Four dictionaries were actually used, namely,
Spanish (86.061 words), French (138.257 words),
Italian (116, 879 words) and English (69, 069 words).
The dictionaries were indexed using GNATs built
with arities 2, 4, 8,16, 32, 64, 128, 256 and 512.

The experiments have been split into two phases.
The first phase aimed to determine the most appro-
priate value of = to be used for HDZ technique on
each dictionary. Once this value was established, on
phase two, the experiments were run using the two
proposed techniques. In order to obtain a measure of
their performance, the results of phase two were com-
pared against the naive center selection technique: the
random selection (RND).

Because of space reasons, in the following sections
only most relevant results will be included; interme-
diate results will not be exposed but are available on
demand.

Choosing the x value

The first set of experiments was run using the va-
lues 0,1,2,3,4 and 5 for x aiming to determine its
best value for the different GNAT arities. In this
phase, the dataset to be indexed consisted of a sam-
ple of 50% of the elements, randomly selected from
each dictionary. The full dictionary was not used be-
cause the aim was to obtain some guiding results for
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Figure 4: Varying  in HDZ selection for arities 64 and 256.

the most convenient value for x. A smaller set of
words from the dictionary was chosen instead (5% of
the dictionary) and the range search was performed
using radius r = 1.

Figures 3 and 4 show the results for some arities on
the Spanish, French, Italian and English dictionaries,
denoted by spn, fre, ita and eng, respectively (results
for the other arities are available). The = values used
in these experiments are represented on the xz-axis,
while the y-axis represents the average number of dis-
tance evaluations done to solve a range query with ra-
dius » = 1. As can be observed in the figures, all
the arities of the GNAT preserve a pattern that can be
identified on the curves drawn for the different dic-
tionaries. This allows us to determine the best value
for z that will be used to run the experiments in phase
two. From these figures, it can be determined that for
each GNAT of arity less than 64 (see figure 3), the
most suitable value for x can be either 3 or 4. A sud-
den improvement is experienced by the curves from
values z = 0 to 2 = 3, beyond this value, they tend to
stabilize. Curiously, for GNATSs of arity greater than
64 (figure 4), the curves for the different dictionaries
lose their similitude and decreasing tendency as the
value of = increases.

Given that the plots of figures 3 and 4 were drawn
only based on results for search radius » = 1 and over
a reduced dictionary, these are only a guideline for the
x value. Later, it was experimentally shown that, for
some reduced set of arities of the GNAT, these values
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Arity || Spn Fre Ita Eng
2 r=4 |zxz=4|x=4|x=14
4 zr=4|zrz=4|x=4|x=4
8 zr=4|rx=4|x=4|x=4
16 r=4 |xz=4|x=4|x=4
32 r=3|x=4|x=4|x=3
64 r=3|xz=4|x=4|x=3
128 r=4|x=3|x=3|x=3
256 r=2|z=4|x=2|xz=3
512 r=3|x=3|x=4|xz=2

Table 1: = values for HDZ technique.

did not yield the best results for all the search radii.
Since the best value for x varies for different search
radii and that this value is required at indexing time,
it was decided to chooses the number ¢ as value for
x if ¢ yields a performance value closest to the op-
timal in all the cases. Table 1 shows the values that
were finally selected for each arity and for the differ-
ent dictionaries.

Evaluation of the proposed techniques

In this phase, the indexes were built using 90%
of the elements of each dictionary, leaving the re-
maining 10% as queries for range search with radius
r = 1,2,3 and 4. Given that each GNAT node is size
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of O(m?), where m is the arity of the tree, the experi-
ments had two main objectives. First of all, to analyze
which technique yields better results under the condi-
tion of using the same amount of memory, i.e. same
arity. Afterwards, to study which technique results
in better overall performance, without considering the
amount of memory used.

Even though the complexity measure used is the
number of distance evaluations, the main memory
needed has to be considered as an influent factor. If
the index does not fit in main memory, the amount
of time spent in 1/O operations can affect the its effi-
ciency. Because of this, a balance must be achieved
between the overall performance of the index at
search time and its arity, in order to avoid response
time degradation due to 1/0 operations.

Figures 5 and 6 show the results for the different
techniques on the Spanish dictionary. The GNAT
arities are represented on the x-axis and, on the y-
axis are the average number of distance evaluations
used to answer the range query. As can be seen, for
arities less or equal than 64 , all the center selec-
tion techniques have a common behavior in the sense
that their graphs decrease as the arity of the GNAT
increases. HDZ technique has shown better perfor-
mance than the other techniques; for high selectivity
gueries (r = 1) HDZ saves around 40% of distance
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evaluations and for low selectivity queries (r = 4) the
improvement has been up to 10%.

As mentioned in previous sections, GNAT with ari-
ties greater than 64 do not always help to improve
the index performance at query time. In RND and
HDZ techniques, the performance degrades when the
arity is increased from 256 to 512 and in the CE tech-
nigue the same phenomenon is exposed as arity grows
from 64 to 128. In the later case its performance is
even worse than a random selection. RND and HDZ
achieve their best performance when arity 256 is used
and CE achieves its best performance with arity 512.
Note that CE, even using twice the memory demanded
by the other policies, does not overcome their perfor-
mance.

From this results, we can conclude that HDZ out-
performs the others techniques in all the cases consid-
ered. The RND selection shows little performance im-
provement than HDZ for arity 256 and search radius
r = 4. If the available memory is not enough to store
the entire 256 arity GNAT, clearly the 64 arity GNAT
using the HDZ selection, would be the best choice.

The results obtained using the metric spaces based
on the rest of the dictionaries followed the same pat-
tern as the Spanish dictionary. Figure 7 shows the
results obtained when indexing metric spaces based
on French, Italian and English dictionaries, respec-
tively using radius » = 1 (results for other radii are
available).

Even when the patterns shown by the graphs of
the English dictionary are similar to those of the
rest of the dictionaries, it is remarkable the improve-
ment shown by CE over HDZ for arity 512, per-
forming 10% to 20% less distance evaluations. Any-
way, its lowest value does not overcome the perfor-
mance shown by HDZ with arity 256.

Summarizing, from the results obtained, two major
approaches can be considered: one of them consists
in finding the balance between the average number of
distance evaluations and the required memory, while
the second is to minimize the average number of dis-
tance evaluations.

If the first approach is considered, the use of GNAT
with arities 16, 32 or 64 together with HDZ technique
is the most suitable choice. On the other hand, if
the aim is to minimize the average number of dis-
tance evaluations (second approach), the GNAT with
arity 256 using HDZ technique, results in more than
acceptable general values; only for low selectivity
searches over the Spanish and English dictionaries,
it is barely bitten by the GNAT with arity 256 using
random policy. The figures 8 and 9 summarize the be-
havior of HDZ technique in all the considered cases .

CE has similar performance than RND for Span-
ish and English dictionaries when using GNAT with
arities lower than 32 and high selectivity queries. In
general, for arities 128 and 256, its behavior is worse
than RND, nevertheless its performance improves for
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Figure 7: Search costs for French, Italian ang English dictionar-
ies using search radiusr = 1.

all search radii as arity increases beyond these values.
We suspect that its main problem is the effect of
choosing the closest element of the current center as
the next center. The only way this technique has to in-
corporate diversity in the chosen centers is to increase
their number, i.e. a GNAT of arity 512. The previ-
ous analysis arises this policy as a field where further
development and investigation is required.

6 CONCLUSIONSAND FUTURE WORK

In this paper, two new center selection techniques to
be used during GNAT building have been introduced;
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namely, closer element and high density zone. The
least competitive was the CE selection, having even
worse performance than the random selection. The
most competitive was the HDZ, achieving important
decrease in the number of distance evaluations when
compared to the random selection.

Concerning the future work, we propose to study
the behavior of these policies over some other metric
spaces, adapting them to the new environment if ne-
cessary. Bear in mind that the presented policies are
applicable to metric spaces with bell shaped distance
histograms and that many metric spaces do not satisfy
this condition.

We will also keep investigating the cause of the
poor performance of the CE selection and introduce
some modifications in order to improve it.
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