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ABSTRACT

Segmentation in biological images is essential for
the determination of biological parameters that al-
low the construction of models of several biological
problems. This helps to establish clear relationships
between those models and the parameter estimation,
and for elaboration of key experiments that give
support to biological theories. Segmentation is the
process of qualitative or quantitative information ex-
traction (shape, texture, physical and geometric prop-
erties, among others). These quantities are needed
to compute the biological descriptors for further
classification (v.g., cell counting, development stage
assessment, and many others). This process is almost
always supervised (i.e., human assisted), since the
quality of the images that are produced with classic
microscopy technologies have defects that in general
disallow the application of unsupervised segmenta-
tion techniques.

In this paper we investigate the use of the a local
fractal dimension estimation as an image descriptor
for microscopy images. This local descriptor ap-
pears to be robust enough to perform unsupervised
or semisupervised segmentations, specifically in our
study. We applied this technique on microscopy
images of amphibian embryos’ skin in which, us-
ing immunofluorescence techniques, we have la-
beled the cell adhesion molecule E-Cadherin.
This molecule is one of the key factors of the Ca2+-
dependent cell—cell adhesion. Segmentation of the
cellular outlines was performed using a processing
workflow, which can be repeatedly applied to a set of
similar images, from which information is extracted
for characterization and eventual quantification pur-
poses.

Keywords: Image Processing — Segmentation —
Imunofluorescence Microscopy Images — Fractal
Sets.

1. INTRODUCTION

Morphological techniques in cellular and molecu-
lar biology are aimed to understand both the com-
plex cellular functions, and the interactions of the
cells within the environment. To achieve this goal,

it is indispensable to describe the location patterns
of the significant molecules at a subcellular level.
Fluorescence microscopy has been one of the most
powerful molecule location tool since its inception in
the early 1970s [7]. However, in cases where images
correspond to thick specimens or dyed organisms in
toto (as a whole), the quality of the results turn out
to be degraded. For instance, images obtained by
optical sectioning in fluorescence microscopy present
diverse defects that render useless the application of
unsupervised segmentation algorithms for classifying
cellular forms and patterns. These defects include
additive noise due to superimposition of optical
stimuli, multiplicative noise due to imperfections in
the molecule labeling process, blur due to progres-
sive optical defocus, luminance fluctuations due to
varying thickness in the specimen, and thermal and
electronic noise in the sensor.

In this work we develop a processing workflow
(i.e., a sequence of processing steps) for the segmen-
tation of cellular outlines in images obtained from
specimens of the Bufo arenarum. In these specimens,
molecules of cellular adhesion have been marked by
immunofluorescence techniques, and therefore they
exhibit most of the defects mentioned above. The
workflow is based on computing the local fractal
dimension as an image descriptor of the likelihood
of a cellular outline being present in that part of
the image. The local fractal dimension is estimated
using the box counting algorithm (BFD). After this
description step, adaptive filtering, border extraction,
and geometric recognition techniques are applied.
The results are satisfactory regarding the particular
goal of determining the geometry of cellular mem-
branes, and to be able to validate the specifically
studied biological models. In addition, we show that
the preliminary results of applying this workflow to
other medical images (for example, ultrasound) are
also satisfactory.

A summary of this paper is as follows. In the
next Section we present the overall idea of fractal
dimension in images, together with the local box
fractal dimension method and the use of local fractal
dimension for image segmentation. In Section 3 we
introduce the workflow for unsupervised segmenta-
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tion in immunofluorescence images. We elaborate on
the techniques and present several examples. In the
following Section we present the results of applying
the workflow on the sample images, and also to
different medical images. In Section 5 we present the
conclusions and discuss the future work and further
developments.

2. LOCAL ESTIMATION OF THE BOX FRACTAL

DIMENSION

In images, as well as in other non-deterministic
sets, there is a direct relationship between the fractal
dimension and the self-correlation coefficient of their
characteristic function [10], [8]. This relationship
suggests the possibility of computing an indirect
estimation of the fractal dimension in sets of this
kind1 using statistical methods that extend the usual
definitions of fractality. An example of this is Haus-
dorff dimension (or self-similarity dimension). A
closed set A in an affine space is self-similar if A can
be expressed as the union of N(r) not overlapping
copies of itself scaled with ratio r. In this case, the
fractal dimension D of A is given by the relationship:

D = lim
r→0

log(N(r))

log(1
r )

. (1)

The concept of self-similarity can be used to estimate
the fractal dimension of an arbitrary set. Eq. 1 is
the basis of the estimation of the fractal dimension
of generalized sets in an abstract space. However,
because its generality it is of little computational
use. Several alternative methods are proposed in the
literature to compute the fractal dimension of sets.
In image processing, most of them are applied to
previously binarized images.

One of the most popular computational methods
is the box fractal dimension (BFD), which is based
on measurements of the set over grids of variable
size and position. In BFD, N(r) is the amount of
“visited cells” of radius r, and the regression is
done in the logarithmic space of log(N(r))

log(1/r)
. Given

an image of M × M pixels, (which is previously
binarized using Bayesian estimators for setting the
threshold), we subdivide the image in grids of s× s,
where M/2 ≥ s > 1 and s ∈ Z. Then, the
space (x, y) is partitioned with cells of size s. In
this case the radius is r = s/M . If some lit pixel
of A is within a cell, we consider that the cell
contributes to N(r). The final value of N(r), then,
is obtained counting up all the cells of the grid that
contained at least one lit pixel. N(r) it is computed
for different radii r, averaging the counts over grids
superimposed in different positions of the image.
Then, the fractal dimension D is estimated as the
slope of the least squares regression that fits the
scatter plot of log(N(r)) vs. log(1/r) (see Fig. 1)
[11].

1A binarized image can be regarded as the set of lit pixels in
an affine subspace of �2 .

Fig. 1. (a) An input image, and (b) the least squares regression
of the function log(N(r))

log(1/r)
.

For establishing local estimations of D, it should
be possible to find a similar slope along several or-
ders of magnitude of r, which is not always possible.
Therefore, for small M , the computed values for
D are rough, provisional estimations. These values
are not necessarily exact, but since they are precise
enough, then they can be used as a local feature
for image segmentation. The local BFD estimation
proceeds taking a sub-image centered on the pixel to
estimate. Sub-images of larger size produce better
estimations, but also with a larger computational
cost. In this paper we take grids of up to 7 × 7
pixels as good compromise between time and quality,
which showed to be experimentally adequate in our
examples.

The segmentation process can be understood as
splitting foreground from background in an image
[4]. If foreground and background have both different
statistical distributions, they will have different frac-
tals dimensions. Therefore, it would be possible to
segment them apart in a suitable way using fractal de-
scriptors, much better than with segmentation-based
luminance thresholding. In Fig. 2(a) we represent
the local BFD using a grayscale, where D = 0
corresponds to black and D = 2 to white. In
Fig. 2(b) we show the histogram of the relative
frequencies of D, together with three criteria of
threshold choice (Euclidean, Bayesian, and minimal
distance). In Fig. 2(c) we show the segmented image
using the Bayesian discriminant as threshold.

In images in which border detection with convolu-
tion operators is not successful (with multiplicative
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Fig. 2. (a) Local BFD D of the image in Fig. 1(a) (here represented as gray levels), (b) histogram of D and the thresholding values, and
(c), binarization using the Bayesian classifier on D.

Fig. 3. (a) Input image, (b) histogram of its local BFD (unimodal), (c) luminance segmentation, and (d) BFD segmentation (in both cases,
using Bayesian discriminant).

noise, defocused, with motion blur, etc.), this un-
supervised segmentation strategy is robust, and pro-
duces adequate results [3]. However, when the his-
togram is not bimodal, a more refined analysis may
be needed. Our underlying model of an unimodal,
biased histogram, is to regard it as superimposition of
two Gaussian distributions, with the foreground and
background pixel intensities in each of them. How-
ever, since the means of the two distributions is too
close, the resulting histogram is no longer bimodal.
In this case, an adequate technique is to consider
the bias towards one side of the overall histogram
as due to the least populated class, which biases
the distribution of the most populated class to one
side. Fitting the biased side to the non-biased side
(i.e., making the distribution symmetric) amounts to
subtract the influence of the least populated class
to the whole histogram [2]. In this way the two
underlying Gaussian distributions can be estimated
and the segmentation threshold can be computed with
the standard procedures, as shown in Fig. 3.

3. THE PROCESSING WORKFLOW

In this section we describe the segmentation
method by local fractal descriptors applied on the
skin of Bufo arenarum embryos (stage 19) [5].
They were fixed in Carnoy solution, washed in 1X
PBS at room temperature and 0.1% Triton X-
100 (Sigma, St Louis) during 30 minutes at room
temperature. After that they were incubated in normal

goat serum 1:20 for 35 minutes, and then in rat anti-
E-Cadherin monoclonal antibody (Transduction
Laboratories, Lexintong, USA) 1:50 at 37◦C for
75 minutes. After that, embryos were washed in
1X PBS and then incubated in secondary antibody
(IgG-FICT Sigma, St Louis, USA) 1:64 at room
temperature for 105 minutes. Finally, the embryos
were again washed in 1X PBS and whole mounted
using the anti-fading media Vectashield (Vector Lab-
oratories Inc, Burlingame, CA, USA) to prevent the
rapid fluorescence decay during microscopic exami-
nation.

The fluorescence images obtained by optical sec-
tioning of these embryos exhibit several problems.
First of all, the specimens do not have a uniform
thickness, and then the image cannot be in focus
everywhere. Different depth displacements change
the position of the focused area in the tissue. There-
fore, the information loss due to defocusing cannot
be completely controlled. The image acquisition was
produced with magnifications 40X and 100X, which
give substantially different processing conditions. In
Fig. 4 we show a group of images of the set to be
processed, with different magnifications and depths.
In general the 40X images exhibit more defocusing
and information loss.

Second, the images have additive and digitalization
noise introduced by the electronic acquisition system,
and multiplicative noise due to the autofluorescence
of the epithelial cell, which is a stochastic process

JCS&T Vol. 7 No. 1                                                                                                                                 April 2007

107



Fig. 4. Images of embryos of the Bufo arenarun produced by
fluorescence microscopy of optical sectioning. (a) 100X magnifi-
cation, first slice of the series. (b) 100X magnification, last slice.
(c) 40X magnification, first slice. (d) 40X magnification, last slice.

that modulates the light emission phenomenon. The
fluorocrome linked through the antibodies to the
adhesion molecule E-Cadherin also can be bound
to other, non specific molecules inside the cell. This
creates multiple light sources that interfere with each
other, producing the particular background noise that
can be seen in Fig. 4. A third problem is due to
the non uniformity of the fluorocrome binding and
to the gradual loss of fluorescence emission. These
two effects together produce local unevenness and
changes in the light emission, and therefore in the
intensity and contrast of the foreground in the image.
Finally, the illumination is not uniform because the
thickness of the tissue is not uniform either.

All these defects in the images determine that
the usual segmentation methodologies will not be
successful, either separately or together. In Fig. 5(a)
we may appreciate the result of applying border
detection to the image of the Fig. 4(a) after a me-
dian filtering (median filtering usually diminishes the
sobresegmentation due to noise). In Fig. 5(b) we ap-
plied optimal Canny border extraction operator to the
same image. Any further geometry recognition step
to find the actual cell boundaries is very likely to fail.
The cell boundary extraction problem in these images
will require a more specific pipeline of processes. We
will organize the workflow in three stages, image
standardization and feature enhancement, boundary
segmentation using border detection, and labeling
and feature extraction. In this Section we will be
concerned with the first two of these steps.

3.1 Image standardization and feature enhance-
ment
Given the impossibility to detect borders in a straight-
forward way, we devised a processing method that

Fig. 5. (a) Border detection in Fig. 4(a) using border extraction
after a median filtering, and (b) using the optimal Canny operator.

enhances the geometric local characteristics (specif-
ically edges and vertices, which correspond with
the cellular membrane and the adhesion molecules,
respectively). The use of the BFD in this context
turns out to be adequate for enhancing these features.
The local BFD behaves robustly as an image descrip-
tor even in the presence of all the defects in these
images. In Fig. 6 we show the result of computing the
local BFD on the image in Fig. 4(a) (and represented
as a grayscale map) together with the histogram of
the relative frequencies of the local BFD. We can see
that this process filtered away the area with the most
significant multiplicative noise (the area in focus),
without altering the geometry and features of the
boundaries in the defocused areas. A parameter in
this step is the width of the window around a pixel
where the BFD is being computed. In this example
the width is set to 7 × 7.

To standardize the brightness of the BFD image,
we apply an adaptive local equalization. This step
takes subimages of 32 × 32 pixels, at each block it
subtracts the minimum luminance, and then applies
a uniform equalization. This provides a corrected
luminance histogram without reducing the dynamic
range or saturation. The next step is the supression
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Fig. 6. (a) Local BFD of the image in Fig. 4 represented as
a grayscale, and (b) the histogram of the corresponding BFD
distribution.

of additive noise, which can trigger undesired over-
segmentation in the following stages. This noise is
filtered using an adaptive Wiener filter of growing
window width (10 × 10 up to 25 × 25), followed
by a 20 × 20 median filter. Wiener filters have
been proven adequate for noise reduction in optical
images, where larger kernel sizes are used with larger
magnifications, and the other way around. After
these filtering, we enhance the contrast by means of
grayscale gradient operators. We apply a nonlinear
morphologic gradient enhancement which consists
on the addition of the top hat operator followed
by the subtraction of the bottom hat operator 2. The
structural element for these morphological operations
is a disk, whose radius is also a parameter of the
workflow. In Fig. 7 we can see the result of these
processing steps. The next step (border extraction)
will be processed using watershed (i.e., finding the
ridges of the basins of the minima). For this reason
we generate also the negative of the resulting image.

2Top hat operator is the morphological gradient extraction
image minus eroded image, and bottom hat is the complementary
operator dilated image minus original image.

Fig. 7. (a) Image of Fig. 6(a) after luminance and contrast
standardization, and (b) its negative image.

3.2 Border segmentation
The processing workflow will be unsupervised. So
far all the steps in the enhancing and standardizing
stage are unsupervised. Our purpose in this work is
to provide the most complete and accurate geometric
information of the cellular contours. This can be used
in a further geometric recognition algorithm, which
will be able to detect and characterize the tile patterns
in cellular development. This extraction procedure
should be automatic, providing a robust and adaptive
performance even in the presence of blurred, non uni-
form and noisy boundaries. Unsupervised border ex-
traction techniques are not well developed, and their
performance in optical images is not well understood.
We tested several of the available methods in the
literature, among them active contours (snakes) [1],
region growing [12], evolutionary algorithms [6], and
morphological watershed [9]. This later technique
was the one that produced the most adequate results.

As is well known in the literature, the performance
of the watershed is very sensitive to the initializa-
tion process, which depends on the catchment basin
implantation. Wrong implantation leads to over- or
undersegmented images. Given the prior processing
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Fig. 8. (a) Catchment basin implantation on the image of Fig. 7(b), (b) extended minima, and (c) overlay of the borders segmented with
the watershed over the image in Fig. 7(a).

Fig. 9. (a) Segmentation of image in Fig. 4(b) with the complete workflow, (b) using only median filter 39 × 39, (c) using Wiener filter
20 × 20, and (d) using Wiener filter 25 × 25 .

in our images, the extended minima technique proves
to be a successful catching basin implantation proce-
dure. This technique finds local luminance minima,
which are 8-connected components of size at least p
pixels, whose luminance value is strictly lower than
all the pixels of the boundary of the component.
The extended minima technique finds all the local
minima in the image. This set of minima can also be
ordered with respect to the luminance difference with
respect to the boundary. Then, a useful parameter for
adjusting the segmentation is how many of the most
important minima will be implanted as catchment
basins. After the implantation process, the regions
undergo a morphological flooding process until the
basins divides are found. In Fig. 8 we show the
results of applying this procedure to the image of
Fig. 7(b).

4. RESULTS AND DISCUSSION

During the development of the processing work-
flow we tried several segmentation techniques, com-
binations thereof, and parameters settings. The whole
process was tuned with the 100X images. The im-
portance of the local BFD estimation can be seen
in Fig. 9, where the results of withdrawing this
step from the workflow are shown. The filtering +
watershed process alone, at every possible param-
eter setting, always produced significant over- and
undersegmentation. One of the advantages of this
workflow is that it is flexible enough for adapting

to different images, by means of the parameters that
can be set prior to its application (ı.e., the workflow
is fixed and unsupervised, but can be tuned to the
best performance in a particular case). With the 100X
magnification images, the parameters used are: radius
3 for the structural element for top hat and bottom
hat; 20 ± 2 size p of the connected elements for
catchment basin implantation; Wiener filtering, with
10×10 kernel size; and a window of size 7×7 for the
local BFD estimation. With the 40X magnification
images, the results were also satisfactory, in this case
with a 8±1 size p for the catchment basis, no lowpass
filtering, and the other parameters similar to the 100X
magnification images (see Fig. 10).

As we already mentioned, the purpose of this
paper is to develop a technique for unsupervised
cellular outline segmentation in optical images. The
next step is a geometrical pattern recognition proce-
dure. This step identifies polygonal shapes and their
adjacencies. Every closed polygonal shape is iden-
tified and labeled as a cell. The associated vertices,
and therefore the amount of sides of the cell is the
most important geometric characteristic. The vertices
and edges are labeled, and therefore the adjacencies
among cells are found. Other geometric descriptors
computed over every cell are convex hull, area, Euler
number, centroid, minimax box, equivalent and Feret
diameters, perimeter, orientation, and eccentricity.

To test the applicability of this workflow in other
contexts, we used it for feature segmentation in ultra-
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Fig. 10. The result of the workflow superimposed over the 40X
magnification image in Fig. 4(c).

Fig. 11. The workflow applied to ultrasound images.

sound medical images, in particular to a transversal
section of the femoral artery, and to a longitudinal
section of the carotid. The results are very promising.
In Fig. 11 we show the segmentation of the arteries,
with very little oversegmentation.

5. CONCLUSION AND FUTURE WORK

We presented a processing workflow for the un-
supervised segmentation of cellular outlines in im-
ages of fluorescence microscopy of optical section
obtained from biological specimens (embryos’ skin
of Bufo arenarum). These images present diverse
defects that previously rendered useless the appli-
cation of unsupervised segmentation algorithms for
classifying cellular forms and patterns. These defects
include additive noise due to superimposition of opti-
cal stimuli, multiplicative noise due to imperfections
in the molecule labeling process, blur due to optical
progressive defocus, luminance fluctuations due to
varying thickness in the specimen, and thermal and
electronic noise in the sensor. The workflow is based
on using the local fractal dimension as an image
descriptor of the likelihood of a cellular outline being

present in that part of the image. Local fractal dimen-
sion is estimated using the box counting algorithm
(BFD). After this description step, adaptive filtering,
contouring, and geometric recognition techniques are
applied.

The results obtained with 100X magnification im-
ages are satisfactory, and even with the 40X magnifi-
cation images the results are adequate. The processed
images allow the extraction of geometric information
to determine the geometric patterns arisen in the
cellular development. The only supervision that the
workflow requires is to tune the processing parameter
(kernel size, structural element radius, catchment
basin implantation). We show that the preliminary
results of applying this workflow to other medical
images (for example, ultrasound) are also satisfac-
tory.

We are currently working in further developments.
The repeated application of the workflow over slices
of 3D can be a good approach for feature segmen-
tation in 3D images (PET, CAT, MRI) and also
simulation models. Also, all the processing steps
in the workflow are local, and therefore a GPU
implementation might be able to process even large
images in real time. Another interesting subject for
research is to devise an intelligent procedure for
tuning the parameters, probably based on cases or
prior experience.
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[4] Rafael González and Richard Woods. Digital Image Pro-
cessing. Addison-Wesley, Wilmington, USA, 1996.

[5] K.L. Gosner. A Simplified Table for Staging Anuran Em-
bryos and Larvae. Herpetologica, 16:183–190, 1960.

[6] R. Katz and C. Delrieux. Boundary Extraction Through
Gradient-Based Evolutionary Algorithm. Journal of Com-
puter Science and Technology, 3:7–12, 2003.

[7] Adams C. L., Chen Y. T., Smith S. J., and Nelson W.
J. Mechanisms of Epithelial Cell-Cell Adhesion and Cell
Compaction Revealed by High-resolution Tracking of E-
Cadherin-Green Fluorescent Protein. The Journal of Cell
Biology, 142(4), 1998.

[8] B. Mandelbrot and J. van Ness. Fractional Brownian Motion,
fractional noises and applications. SIAM Review, 10(4):422–
437, 1968.

[9] J. Park and J. M. Keller. Snakes on the Watershed. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
23(10):1201–1205, 2001.

[10] H.-O. Peitgen and D. Saupe. The Science of Fractal Images.
Springer-Verlag, New York, 1986.

[11] J. C. Russ. The Image Processing Handbook. CRC Press,
Boca Raton, FL, 1989.

[12] C. Xu and J. L. Prince. Snakes, Shapes, and Gradient Vector
Flow,. IEEE Transactions on Image Processing, 28(3):359–
369, 1998.

JCS&T Vol. 7 No. 1                                                                                                                                 April 2007

111




