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Abstract

A natural inference mechanism is presented : the
Black Box problem is transformed into a Dirichlet’s
problem on the closed cube. Then it is solved in
closed polynomial form, together with a Mean-Value
theorem and a Maximum Principle.A generalization
to Polytopes and a reduction of any Dirichlet prob-
lem on compacta is mapped into a unit cube in more
dimensions.An algorithm for calculating the solution
is suggested.
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1 HEURISTIC INTRODUCTION

One of the main questions facing the …eld
of Arti…cial Intelligence is the following in-
put/output problem : Given a …nite number m of
instances or cases of a function as training data :

f : f0; 1gn ! f0; 1g

infer , relying only on the given training data,
unknown cases or instances of f , generalizing or
predicting those yet unknown cases.For example,
we are given cases of a binary function :

0; 1; 1; 0; 0; 0; 0 ! 0
1; 1; 1; 0; 0; 1; 0 ! 0
0; 0; 0; 1; 1; 1; 1 ! 1

and we have to predict , say :

0; 1; 0; 0; 0; 0;1 !?

The problem may be restated as follows :
Given a binary function on a subset of the ver-

tices of the nth dimensional unit cube, infer its
values on the rest of the vertices. We must …nd
a way of extending the given data without in-
troducing extra information.The ‡ow of heat is a
powerful process for ‡attening boundary values,
losing information until a steady state is reached
with a …nal minimum of potential energy and a
maximum of entropy (in short, with all possible
‡atness).

The value of a harmonic function in the center
of a ball equals the average of its values on the
boundary sphere ; so at every point any sharpness
of the harmonic function is lost, ‡attened out by
averaging. Not only do the maxima and minima
occur at the boundary but all information present
at the boundary is lost inside the domain in the
process of temperature di¤usion, once a steady
state is attained in the limit smoothed harmonic
function. (The Boltzman entropy of the initial
distribution of temperature may be calculated as
k log(P ) where k is the Boltzmann constant and
P is the number of microstates compatible with
the actual macrostate, that is, with the actual
value of our function at the boundary ). Thus we
may say heuristically that the information of the
whole domain D with its boundary , the training
data and the …nal harmonic function equals the
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information at the boundary when the process
starts, the rest is a powerful ‡attening process
ending in a function without local maxima or
minima. Thus the process adds no information
to the initial training data.

Consider the n-dimensional temperature ‡ow
(heat equation) :

@T (X1;::: ;Xn ; t)
@t

=
X @2T(X1;:::;Xn; t)

@X2
i

such that on the vertices of the cube in Rn

a function T (X1;:: :;Xn ; 0) is given as an initial
temperature distribution .We only …x T as given
data at some vertices of the cube. If we let T
‡ow to the rest of the cube, always maintaining
T at the chosen vertices, and let t ! 1 ,once
the steady sate (not equilibrium) is reached T
will take values on the whole cube and we may
predict the values of T on all the vertices. The
limit function will be harmonic .

The most important property of the solution is
this : the potential equation solves the following
variational problem :

In a given physical system …nd the C2 function
f on the n unit cube compatible with the given
data and with minimum potential energy :

E = min
f

Z 1

0
:::

Z 1

0

vuut
nX

i=1

µ
@f
@Xi

¶2

dX1:::dXn

2 ON THE UNIT CUBE

De…nition :
A P1P (Potential polynomial of degree 1 in

each variable) will consist of a …nite sum of mono-
mials in the variables :

X1; :::;Xn

such that each (real valued ) variable has at
most degree 1; all the coe¢cients also are real-
valued.

The most general P1P with real-valued coe¢-
cients will have the form :

c +
X

ciXi +
X

cijXiXj

+
X

cijkXiXjXk + :::

+c1:2:::nX1X2:::Xn

where all the sums run over all the di¤erent
sub-indices i,j,..., and where no repeated sub-

indices are allowed (there is no c:::;j;:::;j::). A spe-
cial case is the purely boolean where the mono-
mials are composed with variables Xi or their
boolean negations 1¡Xj and the coe¢cients may
be 0 or 1.

Every well formed formula in the predicate cal-
culus has a logical equivalent in this disjuntive
normal form .

P1Ps :
P (X1; X2; :::; Xn)

are functions in the space Rn : their deriva-
tives

@P
@Xi

= Q(X1; X2; :::; Xn)

also are P1Ps, independent of Xi , which im-
plies that all second derivatives are zero , which
makes P1Ps harmonic functions in Rn.

Consider again the n-dimensional heat equa-
tion :

@T (X1;:: :;Xn; t)
@t

=
X @2T(X1;:::;Xn; t)

@X2
i

On the vertices of the cube in Rn a function
T (X1;:: :;Xn; 0) is given as a …xed initial temper-
ature distribution .

Stepwise we may let it ‡ow until the system
converges to a steady state , keeping the initial
data …xed, …rst to edges ,once the edges attain a
steady state which will be preserved , then to
2-dimensional facets, and so on until we have
a temperature distribution on all the boundary
such that it preserves the given data with un un-
ceasing ‡ow of heat at the initial vertices which
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preserves the initial information, and last allow-
ing it to di¤use into the interior points of the
n-dimensional cube.

The resulting function when t ! 1 is the
unique solution of Dirichlet’s problem (see ref.1
and 4) :

Keeping boundary data on some vertices …xed
(it may be just 1 vertex) …nd in the whole cube
the solution of Laplace’s equation :

X @2T(X1;:::;Xn)
@X2

i
= 0

This …nal steady state is not the state of equi-
librium (ref.10) . The ‡ow of heat in order to
sustain the boundary conditions keeps the sys-
tem away from it.

We are given a …nite number of instances or
cases of a function f on a subset of the vertices
of the cube in Rn , and we are required to …nd f
on all the cube and to express it as a P1P on the
training data Let :

Xk
1 ; Xk

2 ; :::; Xk
n (k = 1; :::; m)

be boolean variables, identi…ed with m vertices
of the n-dimensional cube, and let

f ( Xk
1 ; Xk

2 ; :::; Xk
n)

the m given values of f as training data.Call
V the convex hull of the m vertices.

1.Assign to the edge of two linked vertices a
P1P consistent with the values of f on the linked
vertices .That is, assign 0 or 1 or some Xi or
some 1¡Xj to the actual edge, according to the
training data .

2. Proceed in the same way with all the facets
of V , stepwise on each and all dimensions of
the boundary of V . In each case we are solving
Laplace’s

equation with P 1P s on each boundary of each
facet of @V .

3. When all the boundary of V has been mod-
elled, again solve Laplace’s equation, this last
time in n dimensions, to get a unique harmonic
function on V , again a P1P in n variables.

4. The expression of the P1P thus obtained is
automatically extended with identical expression,
to all the cube (in fact to all Rn).

If we assume there is data on a few points of
the closed cube, then any continuous function de-
…ned at those points might grow to be a solution
to Laplace’s equation inside the cube (ref.1). We
get unicity through ’our’

Dirichlet problem :
The following is our main result :

Theorem 1

There is only one solution f for our Dirichlet
problem on the closed cube taking the fi values
on its vertices, which is harmonic on each & all
the facets of the cube.

Proof : The case n=0 is obvious.Consider a
matrix Mk of order 2k whose rows stand for the
di¤erent vertices of the cube, and whose columns
are :

1; X1; X2;::; Xn; X1X2; :::;
Xn¡1Xn; X1X2X3; :::;
X1X2:::Xk

We choose the …rst row or vertex to be
{1,0,0,...,0}, the case in which the variables are
zero; and the …rst column to be {1,1,...,1} cor-
responding to 1. Mk is a matrix of order 2k.For

example if n = 1 we have M1 is :

1 0
1 1

and M2 is :

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

We proceed to generate Mk+1: the columns
are the previous ones plus the new ones:

Xk+1 ¤ [ 1; X1; ::; X1X2:::Xk ]
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We may write :

Mk+1 =
µ

Mk 0 ¤ Mk
Mk 1 ¤ Mk

¶
=

µ
Mk 0
Mk Mk

¶

An elementary excercise in algebra gives us the
result : det(Mk+1) = det(Mk)

2
:

By the induction hypothesis the determinant of
Mk is not zero, then the determinant of Mk+1 is
not zero .

The linear equations :

Mn

0
BBBBBBBB@

¸1
¸2
:
:
:
:

¸2n

1
CCCCCCCCA

=

0
BBBBBBBB@

f1
f2
:
:
:
:

f2n

1
CCCCCCCCA

for any given fi have exactly one solution; then
:

f = ¸1 + ¸2X1 + :::: + ¸2nX1X2::::Xn

is the unique solution to our Dirichlet problem
on the closed n-dimensional unit cube.

3 MODELLING WITH P1P’S

The potential energy of each function f is calcu-
lated from the variational formula :

E = min
f

Z 1

0
:::

Z 1

0

vuut
nX

i=1

µ
@f
@Xi

¶2

dX1:::dXn

The following data are a modi…ed form of a
decision tree solving a ’tennis puzzle’ ( ref. 15,
chapter 2 ). A Boolean function …s de…ned in 13
examples :

0 0 1 1 1 0 ! 0
0 0 1 1 1 1 ! 0
0 1 1 1 1 0 !1
1 1 0 0 1 0 !1
1 1 1 0 0 0 !1
1 1 0 1 0 1 !0
0 0 0 0 0 1 !1
0 0 0 0 1 0 !0
0 1 0 0 0 0 !1
1 1 0 0 0 0 !1
0 1 0 0 1 1 !1
0 1 1 1 0 0 !1
1 1 0 0 1 1 ! 0

We proceed to calculate a least squares linear
…t to the data; all the 26 regressors are used.We
…nd the P1P model :

1 ¡ X5 + X2X5 ¡ X1X2X6

as a fairly good representation of the function.

Warning :
Our solution does not always end in a mini-

mum description length P1P.
If we are given :

0 0 — !0
1 0 — !1
0 1 — !0

and we are asked to …nd the value correspond-
ing to 1 1 :

The ‡ow of heat will give us the chosen solution
:

1 1 — !0.5

model =

X2(1 ¡ 0:5X1)

with potential energy = 1 .354

If instead 0.5 we put :

1 1 — !0

we get a potential energy = 1.367 and a model
=

X1(1 ¡ X2)

But with :
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1 1 — !1

we get a potential energy = 1.4948 and a
model =

X1

In other words : the solution model is the
longest.

Again, given :

0 0 — !0
1 0 — !1
1 1 — !0

The ‡ow of heat will give us :

0 1 — !0

with potential energy = 1.367 and model=

X1(1 ¡ X2)

If we put:

0 1 — !1

we get a potential energy = 1.416 and a
model=

X1(1 ¡ X2) + (1 ¡ X1)X2

If we put :

0 1 — ! -1

the potential energy = 1.416 and the model=

X1X2

The …rst solution is chosen, and it is not the
shortest one.

4 NEURAL NETS

Every P1P has an equivalent Neural Net : Each
variable Xi is an input neuron and the rest is an
and/or scheme ; the real coe¢cient of each mono-
mial is the weight of the corresponding neuron.
For example :

P = c +
X

ciXi +
X

cijXiXj + :::

+c12:::nX1X2:::Xn

may be directly interpreted as a neural net and
as a NeuPro code. weights are set to 1 and the
threshold to k . The monomial will enter other
neurons with a weight equal to its coe¢cient c.

On the other hand all the monomial neurons
will be connected to neuron P with a threshold
equal to 0.5.

The weight of each monomial is its coe¢cient

in the P1P.
Consider as example :
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It translates directly into the following NeuPro
code (see ref.12) :

r : t : ¡ n1 : w1; n2 : w2; :::; nk : wk:

We started with an I/O situation from which
we may infer the underlying function f express-
ing it as a P1P ; then we obtain a ’natural’ neural
net representing f and …nally we translate me-
chanically the neural net into a NeuPro program.

5 CONCLUDING REMARKS

1.Assuming training data is given at a subset
of the vertices of a unit n cube we map the pre-
diction problem into …nding the solution of the
heat equation in the whole cube.

2.Our inference machine is then the natural
‡ow of temperature …xing the training data dur-
ing the process in a typical Dissipative Structure.
(see ref.10)

3.The unique limit solution as t ! 1 is har-
monic which means it is the function with mini-
mum potential energy compatible with the given
data.

4.The solution also has maximum Boltzmann’s
entropy :

H = k log(P )

where P is the number of microstates (or com-
plexions) in the actual physical …nal macrostate
and k is Boltzmann’s constant.

5.The P1P solution has an inmediate transla-
tion into a Neural Net and into a Neupro (or
Prolog ) code.

6.We may translate Prolog code into P1P’s ob-
taning a model of the code, a kind of ’self mod-
el’ of the program.(see appendix). This feature
might be useful in the debugging process.

7.The P1P solution is often, but not always, a
Minimum Description Length object.

8.A forthcoming paper will study the complex-
ity properties of our scheme.

6 APPENDIX

We map into our scheme a prolog program mod-
elling the grandfather relation . Consider the pro-
gram :

a(X, Z) :- p(X, Y), p(Y, Z).

p(juan, pedro).

p(juan ,luis).
p(jose, jorge).
p(pedro, alberto).
p(jorge, roberto).

a(juan, alberto).
a(jose, roberto).

We may code this information as follows:
We assign predicates p and a with 1 and 0 re-

spectively.

juan=000
pedro=001
luis=010
jose=011
jorge=100
alberto=101
roberto=110
ruben=111

We code the predicates as follows:
1110001 is the code for p(ruben, juan).
0000011 is the code for p(juan, pedro).
0000101 is the code for p(juan, luis).
0111001 is the code for p(jose ,jorge).
0011011 is the code for p(pedro, alberto).
1001101 is the code for p(jorge, roberto).
0001010 is the code for a(juan, alberto).
0111100 is the code for a(jose, roberto).

We …nd, as a …tted model for the underlyng
theory with an error = 2.4-1 5

the following function :

f = 2 ¡ X2 + X3 ¡ X2X3 ¡ X5 ¡ X6 ¡ X4X6

Now we test this model for f trying the follow-
ing examples :
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1110010 is the code for a(ruben, pedro)
( f should be 0) .

1110100 is the code for a(ruben ,luis)
( f should be 0) .
1000010 is the code for a(jorge ,pedro)
( f should be 1) .

We run the model for f and …nd :

fX1X2X3X4X5X6g =
f111001g ! f = 2:2¡15

fX1X2X3X4X5X6g =
f111010g ! f = 2:4¡15

fX1X2X3X4X5X6g =
f100001g ! f = 1

In almost perfect agreement with the theory.
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