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ABSTRACT 
 
The ability to afford decision makers with both accurate and 
timely consolidated information as well as rapid query response 
times is the fundamental requirement for the success of a Data 
Warehouse.  To provide fast access, a data warehouse stores 
materialized views of the sources of its data. As a result, a data 
warehouse needs to be maintained to keep its contents consistent 
with the contents of its data sources. Incremental maintenance is 
generally regarded as a more efficient way to maintain 
materialized views in a data warehouse   The view has to be 
maintained to reflect the updates done against the base relations 
stored at the various distributed data sources. The proposed 
approach contains two modules namely, (1) materialized view 
selection(MVS) and (2) maintenance of materialized view. 
(MMV). In recent times, several algorithms have been proposed 
for keeping the views up-to-date in response to the changes in 
the source data. Therefore, we present an improved algorithm for 
MVS and MMV using IM-LSI(Itemset Mining using Latent 
Semantic Index) algorithm.  selection of views to materialize 
using the IM(Itemset Mining) algorithm method to overcome the 
problem resulting from conventional view selection algorithms 
and then we consider the maintenance of materialized views 
using LSI. For the justification of the proposed algorithm, we 
reveal the experimental results in which both time and space 
costs better than conventional algorithms. 
 
Keywords : materialization view, data warehousing, selection 
cost, I-mine item set index, FP growth , LSI index 
 
I. INTRODUCTION 
 
Data warehouse (DW) can be defined as subject-oriented, 
integrated, nonvolatile, and time-variant collection of data in 
support of management’s decision [2]. It can bring together 
selected data from multiple database or other information 
sources into a single repository [3]. To avoid accessing from 
base table and increase the speed of queries posed to a DW, we 
can use some intermediate results from the query processing 
stored in the DW called materialized views. Therefore, 
materialized view selection involved query processing cost and 
materialized view maintenance cost. Materialized views are the 
derived relations, which are stored as relations in the database. 
When a base relation is update, all its dependant materialized 
views have to be updated in order to maintain the consistency 
and integrity of the database. The process of updating a 
materialized view in response to the changes in the base relation 
is called ‘View Maintenance’ that incurs a ‘View Maintenance 
Cost’. Because of maintenance cost, it is impossible to make all 
views materialized under the limited space and time. This need 
to select an appropriate set of views to materialize for answering 
queries, this was denoted Materialized View Selection (MVS) 
and maintenance the selected view denoted Maintenance of 
Materialized View(MMV). [1-3] 
 
The paper is organized as follows. In Section 2, we  
describe a related work of materialized view selection  
and materialized view maintenance and also explain in  
section 3 and 4 propose work of MVS and MMV. In  
section 5, we shown experimental setup, section 6, 
display and its discussion and section 7, we describe  
concluded the paper and section 8 will provide the  
references. 

2. RELATED WORKS 
 
The problem of finding views to materialize to answer queries 
has traditionally been studied under the name of view selection. 
Its original motivation comes up in the context of data 
warehousing. 
 
Harinarayan et al. [21] presented a greedy algorithm for the 
selection of materialized views so that query evaluation costs can 
be optimized in the special case of “data cubes”. However, the 
costs for view maintenance and storage were not addressed in 
this piece of work. Yang et al. [5] proposed a heuristic algorithm 
which utilizes a Multiple View Processing Plan (MVPP) to 
obtain an optimal materialized view selection, such that the best 
combination of good performance and low maintenance cost can 
be achieved. However, this algorithm did not consider the 
system storage constraints. Himanshu Gupta and Inderpal Singh 
Mumick [8] developed a greedy algorithm to incorporate the 
maintenance cost and storage constraint in the selection of data 
warehouse materialized views. Amit Shukla et al. [12] proposed 
a simple and fast heuristic algorithm, PBS, to select aggregates 
for precomputation. PBS runs several orders of magnitude faster 
than BPUS, and is fast enough to make the exploration of the 
time-space tradeoff feasible during system configuration. 
Himanshu Gupta and Inderpal Singh Mumick [3] developed 
algorithms to select a set of views to materialize in a data 
warehouse in order to minimize the total query response time 
under the constraint of a given  total view maintenance time. 
They have designed approximation algorithms for the special 
case of OR view graphs. Chuan Zhang and Jian Yang [5] 
proposed a completely different approach, Genetic Algorithm, to 
choose materialized views and demonstrate that it is practical 
and effective compared with heuristic approaches. Sanjay 
Agrawal et al. [6] proposed an end-to-end solution to the 
problem of selecting materialized views and indexes. Their 
solution was implemented as part of a tuning wizard that ships 
with Microsoft SQL Server 2000. Chuan Zhang et al. [2] 
explored the use of an evolutionary algorithm for materialized 
view selection based on multiple global processing plans for 
queries. They have applied a hybrid evolutionary algorithm to 
solve problems. Elena Baralis, Tania Cerquitelli, and Silvia 
Chiusano, developed a the I-Mine index, a general and compact 
structure which provides tight integration of item set extraction 
in a relational DBMS.[9] 
 

The primary intent of this research is to selecting 
views to materialize so as to achieve finer query response in low 
time by reducing the total cost associated with the materialized 
views. The proposed work exploits materialize the candidate 
views by taking into consideration of query frequency, query 
processing cost and space requirement. In order to find the 
frequent queries, we make use of Item set Mining (IM) 
techniques from which the frequently user accessible queries 
will be generated. [11]. For the item set mining we are using FP 
TREE algorithm to find the frequency queries. Then, an 
appropriate set of views can be selected to materialize by 
minimizing the total query response time and the storage space 
along with maximizing the query frequency. The outcome can be 
directly utilized by the users to obtain the quicker results once a 
set of views is materialized for the data warehouse [11-14]. After 
selecting a top k queries are materialized. These queries are 
maintenance when base table updated without re-computation 
using LSI (latent Semantic Index). 
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3 APPROACHES TO MATERIALIZED VIEW 
SELECTION (MVS) 
 
The challenge behind the first phase is to materialize the 
candidate views by taking into consideration of query frequency, 
query processing cost and space requirement. In order to find the 
frequent queries, we make use of Item set mining techniques 
from which the frequently user accessible queries will be 
generated. Then, an appropriate set of views can be selected to 
materialize by minimizing the total query response time and/or 
the storage space along with maximizing the query frequency. 
These can be utilized by the users to obtain the quicker results 
once a set of views is materialized for the data warehouse.  
 
The input to the proposed approach is data warehouse model, DW 
and a user’s table (UT) that contains the list of queries used by 
the number of users. For materialized view, the queries that are 
mostly used by the users should be selected but, at the same 
time, the query processing cost should be less. According to, we 
have used the data ware house, DW that contains four tables. The 
schema of the data ware house used in the proposed approach is 
represented with four various tables such as customer (T1), order 
(T2), product (T3) and vehicle (T4). Here, ‘order’ (T2) is a target 
table, which consists of four field records such as OrderID, 
ProductID, CustomerID and Time of buying where, ProductID 
and CustomerID are two foreign key relations. The order table 
contains one tuple for each new order, and its key is OrderID. 
The customer table contains details about the customer and its 
field records are customerID, Name, Age, Housetype and City. 
The relationship among the multiple tables presented in the 
example is represented as: T2  T1; T2  T3 and T4  T1, where 
Ti  Tj means that the foreign key of table Ti is the primary key 
of Tj. 
 

 

                    
 
3.1 Finding the parameters of view selection cost 
  
Then, we have built one user’s table, UT to find the frequency of 
every query for computing the query frequency cost. The user’s 
table is denoted as, UT consisting of ‘m’ columns and ‘n’ rows.  
Every row signifies the number of users who are used the data 
ware house to find the important information by posing the 
queries. Every column signifies the set of queries used by the 
corresponding users. Here, the users table is maintained for the 
input data ware house model so that the query frequency 
computation can be possible. Once a user’s table is built, we can 
select a set of views for materialization. The frequency 
computation is not an easy task if the user’s table contains large 
number of attribute columns as well as user rows. So, there is 
need a standard algorithm to mine the frequent queries from the 
user’s table, UT. In addition to, the choice of algorithm is a major 
concern in finding the frequent queries for further reducing the 
time complexity. By considering these, we make use of the 
IMine algorithm, Index Support for Item Set Mining to mine the 
frequent queries. The advantage of the IMine algorithm is that it 
can mine the frequent queries with less computation time due to 
its IMine index structure compared with the traditional 
algorithms like, Apriori and FP-Growth.  
So, we have applied IMine algorithm to user’s query table UT for 
finding the frequent queries and their corresponding support 
value. Then, for all the queries, we maintain a table, T that 
contains the frequency obtained from the IMine algorithm, the 
query processing cost and spatial cost required. Using this table, 

the selection cost SQ of every query Q is computed by combining 
the above three values. The main objective is that the spatial cost 
and query processing cost should be minimized but, the 
frequency-based cost should be maximized. The reason behind is 
that, if the query is to be materialized, then the query should be 
frequently used by the number of users. On the other hand, the 
storage cost should be minimum in order to reduce the space 
require to store the results. By considering this multi-objective, 
at first we sort the queries in a descending order based on 
frequency and at the same time, for other objectives, the queries 
are sorted in a ascending order according to the storage cost and 
query processing cost. Then, we select the top ‘k’ queries from 
the every sorted list so that the queries that are satisfying 
multiple objectives can be possibly selected. After that, the 
queries that are presented in the three sorted lists are selected to 
find the selection cost, SQ [14-20].  
 
3.2 Designed formulae to compute the selection cost 
 
For finding the selection cost of the every query, the query 
frequency cost Qf, query storage cost Qs and Query processing 
cost Qp are computed using the following formulae,  
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Where, Qf  frequency of query  Q  

            QP
 Processing cost of query Q  

          QS
 Storage of cost QS

 
 
Using these parameters such as, Qf, Qs, and Qp, the selection cost 
SQ is computed using the designed formulae that maximize the 
query frequency and minimize the spatial cost and query 
processing cost.  

)1(*)1(** spfQ QQQS −+−+= δβα
 

Where, are Weights such that sum of equals 1. Moreover, δβα 
,and δβα and represent Query frequency cost, Qf represent query 
storage cost, and Qs and Qp represent Query processing and cost 
respectively. Then, the set of queries whose cost is implemented 
in less than the minimum threshold () is selected to build the 
materialized views. TM 
Where, α, β, and δ  Weightage constants, Qf  Query 
frequency cost, Qs  query storage cost, and Qp  Query 
processing cost. Then, the set of queries that are satisfied the 
minimum threshold (TM) is selected to build the materialized 
views.  

 
Thus, the selected views to materialize can be achieved the best 
combination of good query response, low query processing cost 
and low storage space. 
 
3.3 Experiment for designed formula: 
 
This section presents the running example of the designed 
formulae utilized in computing the selecting cost. Table 1 gives 
the users and their queries representing in the matrix format that 
is given to IMine algorithm to find the frequent queries. Table 2 
represents the queries and their relevant frequency, processing 
cost and storage cost. Then, the queries are sorted in an 
ascending order for the frequency column and descending order 
for the processing and storage cost column. Then, top k-queries 
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selected from table 3 are used to find the selection cost. The 
selection cost of the queries is computed based on the above 
equation and the values computed are shown in table 3. From the 
table 3, Q1and Q4 can be selected for materialized view 
selection based on the threshold value (0.65).  

 

 
 

 

 
To satisfy the multiple constraints we are selection only two 
queries from the total queries. 

 
Fig2 : Before and After Materialized view 
 
4 APPROACHES TO MATERIALIZED VIEW 
MAINTENANCE (MVM) 
 
This section describes the detailed procedure of the designed 
approach to view maintenance. The principle behind the second 
module is to handle the maintenance problem without re-
computing the materialized views.  For example, if the data 
warehouse gets updated (Addition and deletion of data source) 
after selecting materialized view, the corresponding updating 
data source should be reflected in the view. In order to deal with 
the updating and deletion of data source, the output of the query 
should be given by considering the updated data records without 
re-computing the whole process. Accordingly, we have designed 
an approach to view maintenance without accessing the data 
warehouse or view. The process of updation and deletion can be 
happened whenever the data sources are updating the records to 
the original data warehouse. The diagram given in figure 2 
describes the data warehouse updation from the data sources and 
figure 3 describes the overall procedure of the proposed 
approach.  

 
Fig3: Data warehouse updation from the multiple sources,           
 

 
Fig 4: View Maintenance process 
              
 
4.1. Representation of changes 
 
Once we generate the materialized view for the specific data 
records, the maintenance of materialized view is important. In 
order to maintain the information about the materialized view, 
the following types should be handled. Let, V = R1 ∞ R2 ∞ R3 
be the set of relations in the materialized view and R be the 
relations denoted as, R = (A, B, C). Here, the data warehouse 
updation especially data record changes can be done in three 
different ways such as, (1) insertion, (2) deletion and, (3) 
modification of data record.  
 
(1) Insertion: Let <DW> be the original data warehouse house 
and if new record Ri is added into the original data warehouse, 
the data warehouse will be changed to < DW + Ri >. 
(2) Deletion: Let the data record, Ri be defined in the original 
data warehouse and < DW - Ri > is denoted like the data record 
deleted from the original data warehouse < DW >. 
(3) Modification of data record: Let Ri be the data record 
defined in the < DW > and the specified data record Ri is changed 
to Ri

’. But, there is no addition or deletion in the data ware house 
and there is a change as  < DW - Ri’ - Ri >. 
 
4.2 Maintaining tables in updating manager 
 
The ultimate aim of this phase is to build the approach that 
should reflect the changes done in the updation phase by 
considering the maintenance cost. Actually, the original data 
warehouse obtains the data from the multiple data sources that 
may be in different places. So, the data warehouse can be 
updated from the multiple data sources that are connected with 
the different data sources. The view maintenance process is 
initiated by the updating manager when the data gets added or 
deleted in ‘n’ number of times. Once the ‘n’ updates occurred, 
the corresponding updates should be reflected in the query 
output using the depicted procedure. In the updating manager, 
four tables are maintained about to query attributes, function, 
query result table and temporary table using LSI index.  After 
constructing the materialized view, the three tables are 
constructed from the view definition. These three tables are 
necessary to update the materialized view without accessing the 
original data warehouse and materialized view.  
 
1) Query attribute table AT: This table contain N*M matrix, 
where N is the number of queries materialized and M is the 
number of attributes within the queries materialized. The values 
within the matrix may be zero or one, based on whether the 
attribute is defined in the query or not. The binary values only 
defined within the query attribute table so that it can be named as 
binary matrix. This table is used to relate the updated record with 
the attributes of the query materialized. This table is formed to 
identify the tables which are relevant to the query.  
 
2) Query function table FT: This function table maintains the 
functions of the queries materialized so that the relevant function 
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of the queries can be performed on the updated record. The 
query function table is represented with the matrix N*K, where 
‘N’ is the number of queries materialized and ‘K’ is the function 
utilized in the query. This table is necessary to find out the 
comparison predicate, which restricts the rows to be added to the 
materialized view.   
 
3) Temporary version table TT: This table maintains the detailed 
information of the updated record. Here, the table contains 
whether the data is inserted, deleted or updated along with the 
version id. The detailed information of the updated record is 
located in the temporary version table after the view 
maintenance process finished. Once the view maintenance 
process finished for the particular updates, the relevant data will 
be deleted from the temporary version table that will help to 
reduce the space complexity.  
 
4) Query result table RT: This table may be represented as, N*1 
matrix, where, N represents the number of queries materialized, 
Here, the query results of every materialized queries are 
maintained so that the refreshing the query is easy.  
 
5. EXPERIMENT 
 
The data warehouse schema of the chosen example is given in 
table 6 in which four tables such as customer, product, order and 
vehicle are used.  

 

 
Based on the above example, the following three queries, Q1, Q2 
and Q4 are considered as the query materialized shown in table 
5. 

  

 
Once the query has selected for materialized, query attribute 
table, query function table and temporary version will be 
constructed. For the given example, the attributes needed to 
execute the queries are cid, cname, price and quantity that are 
stored as attributes in query attribute table. The query attribute 
table for the chosen queries is given in table 6, in which “binary 
one” indicates the attributes presented in the query. Query 
function table maintains the functions of all materialized queries 
in table 7. 

 

 
 

 

 

 

 
 
Whenever the data are inserted into the original data warehouse, 
the same data is maintained into the temporary version table. 

Similarly, we consider five updates were done in the original 
data warehouse so that those data are also updated into the 
temporary version table. The sample data considered as updated 
to warehouse is maintained in the following table 9. 
 

 
 

5.1 Finding relevant queries to view adaptation  
 
When the temporary version table contains ‘n’ versions, we have 
decided to use the batching technique to refresh the view extent 
rather than the sequential method. In general, sequential and 
batch maintenance methods are used to maintain the materialized 
views. Here, we decided to use the batch strategy for updating 
the result of the particular query defined within materialized 
view. In this method, whenever ‘n’ versions are updated in the 
temporary version table, the view maintenance process will be 
started. Here, at first, new arrival column of version table is 
converted into the binary matrix. If the corresponding attribute 
contains the data entry, then the binary matrix will have ‘binary 
one’ in their relevant field. If the attribute does not contain any 
entry, the corresponding value would be ‘binary zero’.  

 

 
 
After obtaining this matrix, every row matrix is matched with the 
every row of the query attribute table to find the difference 
value. The matching should be done with the row matrix of 
query attribute table that contains the value one. In this set of 
elements, we find out the number of matches. If the matches will 
be zero, there is no need to update the materialized view of this 
query based on the updated record. If the significant matches are 
found out, then the function defined in the query function table 
will be performed on the updated data record and the final output 
of the query will be automatically updated. This procedure is 
repeated for the every data record in the query temporary table 
and the results get updated.  
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Once the relevant changes are identified, the corresponding view 
is refreshed based on the function defined within the query 
function table.  
 
Refreshing the view extent based on insertion changes:  
Suppose the data record, < R+ > is newly added in the data 
warehouse and assume that this data is related to the query 
function FT(i) of query Q(i). Then, the query output will be 
refined by adding this data so that the refreshing view can be 
known as, self maintainable.   
RT

new(i) = RT
old(i) is replaced by if TBVT(i) belong to AT(i) and 

FT(i) 

)(       )),((    )( iAtobelongsRifRiRFiR T
old

TT
new

T >+<+=  
Function Formula 

Min If max(RT
old(i) < TVT(ai) then  

RT
old(i) = RT

new(i)  

Max If max(RT
old(i) > TVT(ai) then  

RT
old(i) = RT

new(i) 

Count RT
new =RT

old + 1  

Avg RT
new  =RT

old 
  + TVT(ai) /n+1 

Sum RT
new  =RT

old 
   +TVT(ai) 

 
Refreshing the view extent based on deletion changes:  
Suppose the data record, < R+ > is newly deleted in the data 
warehouse and this data are related to the query function FT(i) of 
query Q(i). Then, the query output stored in query result table 
will be refined by performing the query function over this data. 
  
Function Formula 

Min If min(RT
old(i) < TVT(ai) then RT

old(i) else 
(RT

old(i) ,RT
new(i)) 

which minimum value is stored , that value is 
deleted means deletion update will not work  

Max If max(RT
old(i) > TVT(ai) then RT

old(i) else 
(RT

old(i) = RT
new(i)) 

which maximum value is stored , that value is 
deleted means deletion update will not work  

Count  RT
new =RT

old – 1  

Avg RT
new  =RT

old 
  - TVT(ai) /n-1 

Sum RT
new  =RT

old 
  -TVT(ai) 

 
)(       )),((    )( iAtobelongsRifRiRFiR T

old
TT

new
T >−<−=  

 
Refreshing the view extent based on modification: Let the data 
record < R > from the data warehouse be modified to another 
value < R* >. Then, refreshing the view is carried out by 
performing the query function to the modified data record and 
the query output is updated without accessing the data 
warehouse.  
 
Function Formula 

Min If min(RT
old(i) < TVT(ai) then RT

old(i) else (RT
old(i) 

,RT
new(i))  

Max If max(RT
old(i) > TVT(ai) then RT

old(i) else (RT
old(i) = 

RT
new(i))  

Avg RT
new  =RT

old - RT
old (i) +   TVT(ai) /n 

sum RT
new  = RT

old - RT
old (i) +   TVT(ai) 

 
)(   *    *)),((    )( iAtobelongsRifRiRFiR T

old
TT

new
T ><=  

After the five updates, the binary matrix is generated based on 
the attributes updated. The binary matrix generated for the above 
temporary version table is given in table 9. Then, query attribute 
table is matched with the binary matrix in which the query Q1 is 
not match with Version no and the query Q2 is matched with 
V1(I) and V4(I). So, for all queries materialized, the updates are 
found out such a way it leads to the modification of query result 
table.  
 

 

 
After updation is completed all temporary tables removed from 
the memory space. Again temporary version tables are create 
when new batch of updation forming in the update buffer. 
 

 
Fig 5: Query updation time 

 
 
6. RESULTS AND DISCUSSION 
 
This section presents the experimentation of the proposed 
approach and the detailed analysis over the proposed approach 
with the previous algorithm. 
 
6.1 Experimental set up and database description 
 
The proposed approach to incremental maintenance of 
materialized view is implemented using JAVA. The database 
taken for experimentation is customer transaction database that 
contains four tables such as customer (T1), order (T2), product 
(T3) and vehicle (T4). The description of the database is given in 
figure 1. The experimentation is carried out using the core2duo 
processor with 1 GB RAM.  The total number of data available 
in customer table is 500 and the order table contains 10000. 
Similar way, the product table contains 900 and vehicle table 
consists of 400.  
 
The performance of the proposed approach is compared with the 
previous algorithms such as IRVSA (Incremental Re-
computation Strategy View Selection Algorithm) [25], IVSA 
(Incremental Strategy View Selection Algorithm) [25], RVSA 
(Re-computation Strategy View Selection Algorithm) [25] and 
YKL algorithm [26]. Here, total Cost measured in seconds is 
used as the performance measure for evaluating and comparing 
the performance of the proposed approach.  
 
6.2 Performance Experiments 
 
The performance of the proposed approach in maintenance of 
materialized view is analyzed with the help of three different 
experiments. 1)  The effect of percentage of updates 2) The 
effect of query load 3) Scalability analysis. In the first set of 
experiment, the updates are varied in different percentage and 
total cost needed to maintain the materialized view is computed 
for different algorithm as well as proposed approach. In the 
second set of experiment, query load is varied significantly such 
a way that, the total query cost in sec is computed to find the 
performance of the algorithms. Similar way, the scalability 
analysis is also carried out by varying the size of the data 
warehouse.  
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6.3 Comparative analysis 
 
This section presents the comparative analysis of the proposed 
approach with the three algorithms presented in the paper [25] as 
well as the algorithm described in [26]. For analyzing the effect 
of updates, the data records are continuously updated to the 
original data warehouse and the computation time is computed. 
For doing this experiment, initially, we have taken 500 records 
in customer table, 10000 records in order table, 900 records 
product table and 400 records in the vehicle table. Then, the 
similar number of records is updated to the original data 
warehouse to find the computation time needed to view 
maintenance process. Similar way, the process is repeated and 
the values are plotted as graph shown in figure 4 and figure 5. 
The figure shows that the performance of the proposed approach 
is significantly improved in terms of computation time compared 
with the previous algorithms. 

 
 
Fig. Effect of percentage of updates 

 
 
Fig.5. Effect of percentage of updates 
 
In the second set of experiment, we have taken 100 queries for 
materialized view selection and then the records are updated 
continuously. The computation cost needed to update these 
queries is computed and the experiment is repeated for different 
set of queries. Finally, the values are plotted as graph shown in 
figure 6 and figure 7. From the figure, when the queries are 
increased, the total cost is also increased. But, the increasing rate 
of the proposed approach is less compared with previous 
algorithms. So, the performance of the proposed approach is 
improved better in terms of computation time compared with the 
previous algorithms. 
 

 
 
Fig.6. Effect of query load 

 
 
Fig.7. Effect of query load 
In the scalability analysis, the experiments are performed for 
different size of data warehouse. Here, for the change factor 1, 
the data warehouse is taken as same as that of the first set of 
experiment and then the computation time needed to update the 
query is computed. For the change factor 2, the data warehouse 
size is increased two times than the first one and the 
experimentation is again continued to obtain the computation 
time. The results obtained from the experimentation are plotted 
as a graph shown in figure 8 and figure 9. From the figures, the 
performance of the proposed approach is significantly improved 
in terms of computation time compared with the previous 
algorithms. 

 
Fig. 8. Scalability analysis 
 

 
Fig. 9. Scalability analysis 
 
 
7. CONCLUSIONS 
 
The maintenance of views to materialize is one of the most 
important issues in designing a data warehouse. The view 
selection problem and materialized view maintenance problem 
have been addressed in this paper by means of taking into 
account the essential constraints for selecting views to 
materialize so as to achieve the best combination of low storage 
cost, low query processing cost and high frequency of query and 
updation of materialized view using LSI. In the first approach, a 
mathematical model was designed to select materialized view 
by considering the frequency, processing cost and spatial cost.  
In addition to, the choice of algorithm is a major concern in 
finding the frequent queries for further reducing the time 
complexity. By considering these, we make use of the I-Mine 
algorithm, Index support for item set mining to mine the 
frequent queries.  For the second approach of view 
maintenance we are using LSI index for maintaining the 
materialized view without re-computation. For 
experimentation, the proposed approach is executed on the 
simulated data warehouse model and the query list to find the 
efficiency of the proposed approach in maintaining of 
materialized view.  As further extensions of this work, 
improve the index for updating the materialized view. For future 
research in this area could focus on validating this model against 
some real-world data warehouse systems and also concentrate on 
join queries for maintenance. 
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