En inglés
A class of spatially flat models with a cosmological constant and a primordial broken scale invariant (BSI) spectrum of adiabatic perturbations is confronted with the most up-to-date observational data of CMB and matter power spectrum. The theoretical model includes a parameter nb for the number of quanta in the non–vacuum initial state, and a privileged scale leading to the existence of a feature in the primordial power spectrum. This feature is located at comoving wavenumber kb and its profile is characterized by a step in k with steepness α, the full set {nb, kb, α} being taken as free parameters in our numerical study. We present here preliminary results of a detailed Markov Chain Monte Carlo analysis with CAMB and CosmoMC of the latest CMB and P(k) measurements, including the 3-year WMAP and the final 2dFGRS catalogue, where we derive joint constraints on eight out of the many relevant primary parameters –both cosmological and feature– of our BSI adiabatic model.
En español
Realizamos una comparacion detallada de modelos inflacionarios con estados iniciales de no–vacıo para las perturbaciones cosmologicas con las mas recientes observaciones de la radiacion cosmica del fondo de microondas y surveys de la estructura a gran escala del universo.