Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-09-30T18:55:50Z
dc.date.available 2020-09-30T18:55:50Z
dc.date.issued 2017
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/105820
dc.description.abstract Eye movements play an important role in actual neuroscience and in the last twenty years, many eye-tracking devices have emerged with different methods and performance features. Generally, the highest quality ones with best performance in terms of accuracy and high framerates, are the most expensive apparatus and very often complicated to assembly. Also, they tend to work in fixed setups and it is hard to perform outdoor experiments, like driving a real car or walking long distances. The comfortable and cheaper ones are usually those having the poorest measuring characteristics, reaching maximum framerates below 250fps, yet with great advantages. These modern remote eye-tracking systems allow, in general, small head movements and the subject has not wear any kind of hardware. This feature is especially important when working with children or people with some kind of physical impairment. They are independent, small and one-piece hardware ready to plug into a mobile computer or laptop, making easy to set a large variety of experiments. In this work, we propose to use wavelet methods to improve real eye movements data, allowing the reconstruction of the signal at a higher resolution than the original one. Transformed data was upsampled and the new coefficients were obtained by interpolation using different techniques and looking for a minimum percentage error between the original and recovered signals. Then, treating the eyetracker data with low samplerate as a complete signal with periodic miss- ing parts or information and inspired in a method for restoring very damaged images, we present an approach to adapt one of the the algorithms for images to 1D signals. Mecánica Computacional Vol XXXV, págs. 2521-2532 (artículo completo) Martín I. Idiart, Ana E. Scarabino y Mario A. Storti (Eds.) La Plata, 7-10 Noviembre 2017 Copyright © en
dc.format.extent 2521-2532 es
dc.language es es
dc.subject Eye movements es
dc.subject Eye-tracking es
dc.subject Wavelets es
dc.title A method for enhancing eye movements data from eye-tracking devices en
dc.type Objeto de conferencia es
sedici.identifier.uri https://cimec.org.ar/ojs/index.php/mc/article/view/5466 es
sedici.identifier.issn 2591-3522 es
sedici.creator.person Dimieri, Leonardo es
sedici.creator.person Castro, Liliana Raquel es
sedici.creator.person Agamennoni, Osvaldo Enrique es
sedici.description.note Publicado en: Mecánica Computacional vol. XXXV, no. 43 es
sedici.subject.materias Ingeniería es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ingeniería es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2017-11
sedici.relation.event XXIII Congreso de Métodos Numéricos y sus Aplicaciones (ENIEF) (La Plata, 7 al 10 de noviembre 2017) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)