Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-03-10T18:42:52Z
dc.date.available 2022-03-10T18:42:52Z
dc.date.issued 2020-10-24
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/132374
dc.description.abstract Astronomical databases currently provide high-volume spectroscopic and photometric data. While spectroscopic data is better suited to the analysis of many astronomical objects, photometric data is relatively easier to obtain due to shorter telescope usage time. Therefore, there is a growing need to use photometric information to automatically identify objects for further detailed studies, specially H α emission line stars such as Be stars. Photometric color-color diagrams (CCDs) are commonly used to identify this kind of objects. However, their identification in CCDs is further complicated by the reddening effect caused by both the circumstellar and interstellar gas. This effect prevents the generalization of candidate identification systems. Therefore, in this work we evaluate the use of neural networks to identify Be star candidates from a set of OB-type stars. The networks are trained using a labeled subset of the VPHAS+ and 2MASS databases, with filters u, g, r, Hα, i, J, H , and K. In order to avoid the reddening effect, we propose and evaluate the use of reddening-free Q indices to enhance the generalization of the model to other databases and objects. To test the validity of the approach, we manually labeled a subset of the database, and use it to evaluate candidate identification models. We also labeled an independent dataset for cross dataset evaluation. We evaluate the recall of the models at a 99% precision level on both test sets. Our results show that the proposed features provide a significant improvement over the original filter magnitudes. en
dc.format.extent 111-123 es
dc.language es es
dc.subject Stellar Classification es
dc.subject OB-type stars es
dc.subject Be stars es
dc.subject VPHAS+ es
dc.subject 2MASS es
dc.subject IPHAS es
dc.subject SDSS es
dc.subject LAMOST es
dc.title Reddening-Free Q Indices to Identify Be Star Candidates en
dc.type Objeto de conferencia es
sedici.identifier.other doi:10.1007/978-3-030-61218-4_8 es
sedici.identifier.issn 1865-0929 es
sedici.identifier.issn 1865-0937 es
sedici.identifier.isbn 978-3-030-61218-4 es
sedici.creator.person Aidelman, Yael Judith es
sedici.creator.person Escudero, Carlos Gabriel es
sedici.creator.person Ronchetti, Franco es
sedici.creator.person Quiroga, Facundo Manuel es
sedici.creator.person Lanzarini, Laura Cristina es
sedici.description.note Trabajo publicado en Rucci E., Naiouf M., Chichizola F., De Giusti L. (eds). Cloud Computing, Big Data & Emerging Topics. JCC-BD&ET 2020. Communications in Computer and Information Science, vol. 1291. Springer, Cham. es
sedici.subject.materias Ciencias Astronómicas es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Astrofísica de La Plata es
mods.originInfo.place Instituto de Investigación en Informática es
mods.originInfo.place Comisión de Investigaciones Científicas de la provincia de Buenos Aires es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2020
sedici.relation.event VIII Conference on Cloud Computing, Big Data & Emerging Topics (Modalidad virtual, 8 al 10 de septiembre de 2020) es
sedici.description.peerReview peer-review es
sedici.relation.bookTitle Cloud Computing, Big Data & Emerging Topics. JCC-BD&ET 2020 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)