Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-06-28T18:19:05Z
dc.date.available 2022-06-28T18:19:05Z
dc.date.issued 2020
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/138501
dc.description.abstract La radiación solar es  un factor clave en numerosas  aplicaciones, tales  como sistemas fotovoltaicos  o térmicos, en la arquitectura y  en la agricultura. Sin embargo, no siempre es  posible contar con datos  experimentales  de radiación solar en los  lugares  de interés. Por esta razón, anteriormente, una amplia variedad de modelos teóricos han sido desarrollados con el fin de estimar este parámetro. Este trabajo presenta un análisis  comparativo de modelos  de redes  neuronales artificiales para la estimación de la radiación solar global horaria en la localidad de Florencio Varela, provincia de Buenos Aires, a partir de variables meteorológicas de sencilla obtención (temperatura y humedad relativa). Los resultados obtenidos muestran un pobre desempeño de los modelos cuando son entrenados  con diferentes  condiciones  de cielo. Esto se debe fundamentalmente al conjunto limitado de datos  utilizado y  a la gran dispersión de valores  de radiación solar medidos. Por el contrario, cuando  se  utiliza el índice de claridad  Kt, y los modelos  son  entrenados  con  datos correspondientes a la condición de cielo despejado (Kt > 0.6), los errores de estimación se reducen significativamente. Estos  modelos  podrían aplicarse en lugares  donde no se dispone de valores  de radiación solar medidos. es
dc.description.abstract Solar radiation is a key factor in many applications, such as photovoltaic or thermal systems, architecture and agriculture. However, experimental data on solar radiation may not be available in all geographical areas. For this reason, in the past, a wide variety of theoretical models have been developed in order to estimate this parameter. This paper presents a comparative analysis of artificial neural network models for estimating the hourly global solar radiation in Florencio Varela, province of Buenos Aires, from easily obtained meteorological data (temperature and relative humidity). The results obtained show a poor performance of the models when they are trained with different sky conditions. This is mainly due to the limited data set used and the large dispersion of measured solar radiation values. On the contrary, when the clarity index Kt is used, and the models are trained with data corresponding to the clear sky condition (Kt > 0.6), the estimation errors are significantly reduced. These models could be applied at sites where measured solar radiation values are unavailable. en
dc.format.extent 232-243 es
dc.language es es
dc.subject Radiación solar es
dc.subject Redes neuronales artificiales es
dc.subject Nubosidad es
dc.subject Redes neuronales es
dc.subject Solar radiation es
dc.subject Artificial neural network es
dc.subject Cloudiness es
dc.title Uso de redes neuronales artificiales para la estimación de la radiación solar horaria bajo diferentes condiciones de cielo es
dc.type Articulo es
sedici.identifier.uri http://portalderevistas.unsa.edu.ar/index.php/averma/article/view/1979 es
sedici.identifier.issn 2314-1433 es
sedici.identifier.issn 2796-8111 es
sedici.creator.person Olivera, Lucas es
sedici.creator.person Atia, Julissa es
sedici.creator.person Amet, Leonardo es
sedici.creator.person Osio, Jorge Rafael es
sedici.creator.person Morales, Martín Alberto es
sedici.creator.person Cappelletti, Marcelo Angel es
sedici.subject.materias Ingeniería es
sedici.description.fulltext true es
mods.originInfo.place Asociación Argentina de Energías Renovables y Medio Ambiente (ASADES) es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Avances en Energías Renovables y Medio Ambiente es
sedici.relation.journalVolumeAndIssue vol. 24 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)