Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-08-18T14:27:17Z
dc.date.available 2022-08-18T14:27:17Z
dc.date.issued 2022
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/140652
dc.description.abstract This paper describes the progress made in the context of a research and development project on machine learning techniques and algorithms applied to small microcontrollers. The beginning of the development of EmbedIA, a machine learning framework for microcontrollers, is presented. The experiments carried out comparing the proposed framework with other similar frameworks such as Tensorflow Lite Micro, μTensor and EloquentTinyML show an important advantage with respect to memory and inference time required by small microcontrollers. en
dc.format.extent 42-46 es
dc.language en es
dc.subject Machine Learning es
dc.subject Embedded Systems es
dc.subject Microcontrollers es
dc.subject IoT es
dc.subject Convolutional Neural Networks es
dc.subject TinyML es
dc.title TinyML for Small Microcontrollers en
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-950-34-2126-0 es
sedici.creator.person Estrebou, César Armando es
sedici.creator.person Saavedra, Marcos David es
sedici.creator.person Adra, Federico es
sedici.creator.person Fleming, Martín es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Investigación en Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2022-07
sedici.relation.event X Jornadas de Cloud Computing, Big Data & Emerging Topics (La Plata, 2022) es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/139373 es
sedici.relation.bookTitle Short papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)