Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-08-18T14:49:46Z
dc.date.available 2022-08-18T14:49:46Z
dc.date.issued 2022
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/140657
dc.description.abstract In recent years, Automatic Speech Recognition (ASR) services have performed notable progress in the research efforts of big companies such as Google and Amazon. However, the ASRs are still sensitive to the audio processing quality in other languages. To solve this issue, various speech enhancement algorithms that are the most prominent in improving speech intelligibility were proposed, such as Singular Value Decomposition (SVD), log Minimum Mean Square Error (log-MMSE) and Wiener. By preprocessing the audio files with these algorithms, we seek to reduce the Word Error Rate (WER), which compares the transcription performed by the ASR against a manual transcription. Thus, we can determine the percentage of error that the ASR service has acquired. Results demonstrated that Google is more efficient than Amazon and Vosk counterparts. Also, we decided that applying a Low-pass filter combined with a log-MMSE algorithm to the audio files can substantially reduce the WER percentage of transcription depending on the noise characteristics contained in the audio. en
dc.format.extent 64-69 es
dc.language en es
dc.subject Automatic Speech Recognition es
dc.subject Word Error Rate es
dc.subject Speech enhancement algorithms es
dc.subject Audio quality improvement es
dc.title Improving audio of emergency calls in Spanish performed to the ECU 911 through filters for ASR technology en
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-950-34-2126-0 es
sedici.creator.person Orellana, Marcos es
sedici.creator.person Jiménez Sarango, Ángel Alberto es
sedici.creator.person Zambrano Martínez, Jorge Luis es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Investigación en Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2022-07
sedici.relation.event X Jornadas de Cloud Computing, Big Data & Emerging Topics (La Plata, 2022) es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/139373 es
sedici.relation.bookTitle Short papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)