Busque entre los 166784 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2022-09-28T13:30:45Z | |
dc.date.available | 2022-09-28T13:30:45Z | |
dc.date.issued | 2019-12 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/142868 | |
dc.description.abstract | Accurate prediction of total electron content (TEC) is important for monitoring the behavior of the ionosphere and indeed a magnitude of interest to understand the properties and behavior of the Sun–Earth System. The conditions of this medium have a direct impact on a growing variety of critical technological infrastructure. This work presents a comparison between two different artificial neural networks (ANNs): an adaptive neuro-fuzzy inference system and nonlinear autoregressive neural network (NAR-NN) applied to TEC. Both ANNs where tested on four different geomagnetic locations on 4 1-week periods having a variety of geomagnetic disturbance levels. The effect of using different training period lengths and the system response for 60 and 30 min sampling rate TEC time series was investigated. NAR-NN shows a slightly better performance, being the higher difference during the greater perturbations. There is also a better response when sampling rates of 30 min are used. | en |
dc.format.extent | 8411-8422 | es |
dc.language | en | es |
dc.subject | vTEC | es |
dc.subject | Space weather | es |
dc.subject | Neural network | es |
dc.subject | Forecasting | es |
dc.title | Comparison of adaptive neuro-fuzzy inference system and recurrent neural network in vertical total electron content forecasting | en |
dc.type | Articulo | es |
sedici.identifier.other | doi:10.1007/s00521-019-04528-8 | es |
sedici.identifier.issn | 0941-0643 | es |
sedici.identifier.issn | 1433-3058 | es |
sedici.creator.person | Pérez Bello, Dinibel | es |
sedici.creator.person | Natali, María Paula | es |
sedici.creator.person | Meza, Amalia Margarita | es |
sedici.subject.materias | Astronomía | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Facultad de Ciencias Astronómicas y Geofísicas | es |
mods.originInfo.place | Laboratorio de Meteorología espacial, Atmósfera terrestre, Geodesia, Geodinámica, diseño de Instrumental y Astrometría | es |
sedici.subtype | Articulo | es |
sedici.rights.license | Creative Commons Attribution 4.0 International (CC BY 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Neural Computing and Applications | es |
sedici.relation.journalVolumeAndIssue | vol. 31, no. 12 | es |