Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-09-28T13:30:45Z
dc.date.available 2022-09-28T13:30:45Z
dc.date.issued 2019-12
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/142868
dc.description.abstract Accurate prediction of total electron content (TEC) is important for monitoring the behavior of the ionosphere and indeed a magnitude of interest to understand the properties and behavior of the Sun–Earth System. The conditions of this medium have a direct impact on a growing variety of critical technological infrastructure. This work presents a comparison between two different artificial neural networks (ANNs): an adaptive neuro-fuzzy inference system and nonlinear autoregressive neural network (NAR-NN) applied to TEC. Both ANNs where tested on four different geomagnetic locations on 4 1-week periods having a variety of geomagnetic disturbance levels. The effect of using different training period lengths and the system response for 60 and 30 min sampling rate TEC time series was investigated. NAR-NN shows a slightly better performance, being the higher difference during the greater perturbations. There is also a better response when sampling rates of 30 min are used. en
dc.format.extent 8411-8422 es
dc.language en es
dc.subject vTEC es
dc.subject Space weather es
dc.subject Neural network es
dc.subject Forecasting es
dc.title Comparison of adaptive neuro-fuzzy inference system and recurrent neural network in vertical total electron content forecasting en
dc.type Articulo es
sedici.identifier.other doi:10.1007/s00521-019-04528-8 es
sedici.identifier.issn 0941-0643 es
sedici.identifier.issn 1433-3058 es
sedici.creator.person Pérez Bello, Dinibel es
sedici.creator.person Natali, María Paula es
sedici.creator.person Meza, Amalia Margarita es
sedici.subject.materias Astronomía es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Astronómicas y Geofísicas es
mods.originInfo.place Laboratorio de Meteorología espacial, Atmósfera terrestre, Geodesia, Geodinámica, diseño de Instrumental y Astrometría es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Neural Computing and Applications es
sedici.relation.journalVolumeAndIssue vol. 31, no. 12 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)