Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2023-03-03T17:12:17Z
dc.date.available 2023-03-03T17:12:17Z
dc.date.issued 2023
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/149651
dc.description.abstract Metric space indices make searches for similar objects more efficient in various applications, including multimedia databases and other repositories which handle complex and unstructured objects. Although there are a plethora of indexes to speed up similarity searches, the Distal Spatial Approximation Tree (DiSAT) has shown to be very efficient and competitive. Nevertheless, for its construction, we need to know all the database objects beforehand, which is not necessarily possible in many real applications. The main drawback of the DiSAT is that it is a static data structure. That means, once built, it is difficult to insert new elements into it. This restriction rules it out for many exciting applications. In this paper, we overcome this weakness. We propose and study a dynamic version of DiSAT that allows handling lazy insertions and, at the same time, improves its good search performance. Therefore, our proposal provides a good tradeoff between construction cost, search cost, and space requirement. The result is a much more practical data structure that can be useful in a wide range of database applications. en
dc.format.extent 468-477 es
dc.language en es
dc.subject similarity search es
dc.subject dynamism es
dc.subject metric spaces es
dc.subject non-conventional databases es
dc.title An Efficient Dynamic Version of the Distal Spatial Approximation Trees en
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-987-1364-31-2 es
sedici.creator.person Chávez, Edgar es
sedici.creator.person Di Genaro, María E. es
sedici.creator.person Reyes, Nora Susana es
sedici.description.note XIX Workshop Base de Datos y Minería de Datos (WBDMD) es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2022-10
sedici.relation.event XXVIII Congreso Argentino de Ciencias de la Computación (CACIC) (La Rioja, 3 al 6 de octubre de 2022) es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/149102 es
sedici.relation.bookTitle Libro de actas - XXVIII Congreso Argentino de Ciencias de la Computación - CACIC 2022 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)