Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2023-07-11T17:41:22Z
dc.date.available 2023-07-11T17:41:22Z
dc.date.issued 2023
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/155432
dc.description.abstract Sentiment analysis is a process of identifying and extracting personal information from textual data. It has become essential for businesses and organizations to understand customers' opinions, emotions, and attitudes toward their products, services, or brands. While creating a custom sentiment analysis model can provide tailored results for specific datasets, it can also be time-consuming, resource-intensive, and require a high level of expertise in machine learning. Some tools offer a faster and more accessible alternative to users without a background in machine learning to create a custom model. However, researchers and practitioners usually do not know how to choose the best tool for each domain. This paper compares and evaluates some sentiment analysis tools' differences, considering how they were built and how suitable they are for analyzing sentiments on some specific topics. In particular, this paper focuses on four popular sentiment analysis tools for Python: TextBlob, Vader, Flair, and HuggingFace Transformers. en
dc.format.extent 36-40 es
dc.language en es
dc.subject Sentiment Analysis es
dc.subject TextBlob es
dc.subject Vader es
dc.subject Flair es
dc.subject HuggingFace Transformers es
dc.subject Ruled-based approach es
dc.subject Machine Learning es
dc.title Comparing and evaluating tools for sentiment analysis en
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-950-34-2271-7 es
sedici.creator.person Borrelli, Franco Martín es
sedici.creator.person Challiol, Cecilia es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2023-06
sedici.relation.event XI Jornadas de Cloud Computing, Big Data & Emerging Topics (La Plata, 27 al 29 de junio de 2023) es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/155281 es
sedici.relation.bookTitle XI Jornadas de Cloud Computing, Big Data & Emerging Topics es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)