Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2023-07-11T17:45:16Z
dc.date.available 2023-07-11T17:45:16Z
dc.date.issued 2023
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/155434
dc.description.abstract This paper proposes to apply pre-trained Convolutional Neural Networks (CNN) for the early detection of two common grapevine diseases: peronospora and o´ıdio. These diseases present similar symptoms and are of great viticultural importance. Our objective is to train a CNN using transfer learning techniques to accurately detect the presence of early symptoms of the diseases under study. To achieve that, we’ll design a pipeline that starts with data acquisition in the field and finalizes with the early disease identification, including class definition, labeling, image preprocessing and training process of the CNN, employing edge computing-based service computing paradigm to overcome some inherent problems of traditional mobile cloud computing paradigm. en
dc.format.extent 41-45 es
dc.language en es
dc.subject Deep Learning es
dc.subject Convolutional Neural Networks es
dc.subject Object Detection es
dc.subject Edge Computing es
dc.subject Inclusive Inteligent Systems es
dc.title Early detection of grapevine diseases using pre-trained Convolutional Neural Networks en
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-950-34-2271-7 es
sedici.creator.person Rios, Cristian Emmanuel es
sedici.creator.person Estrebou, César Armando es
sedici.creator.person Frati, Fernando Emmanuel es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2023-06
sedici.relation.event XI Jornadas de Cloud Computing, Big Data & Emerging Topics (La Plata, 27 al 29 de junio de 2023) es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/155281 es
sedici.relation.bookTitle XI Jornadas de Cloud Computing, Big Data & Emerging Topics es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)