Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2023-11-22T16:45:13Z
dc.date.available 2023-11-22T16:45:13Z
dc.date.issued 2023
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/160415
dc.description.abstract Pathway analysis is an important step in the interpretation of single cell transcriptomic data, as it provides powerful information to detect which cellular processes are active in each individual cell. We have recently developed a protein-protein interaction network-based framework to quantify pluripotency associated pathways from scRNA-seq data. On this occasion, we extend this approach to quantify the activity of a pathway associated with any biological process, or even any list of genes. A systems-level characterization of pathway activities across multiple cell types provides a broadly applicable tool for the analysis of pathways in both healthy and disease conditions. Dysregulated cellular functions are a hallmark of a wide spectrum of human disorders, including cancer and autoimmune diseases. Here, we illustrate our method by analyzing various biological processes in healthy and cancer breast samples. Using this approach we found that tumor breast cells, even when they form a single group in the UMAP space, keep diverse biological programs active in a differentiated manner within the cluster. en
dc.language en es
dc.subject scRNA-seq es
dc.subject Protein-protein interaction networks es
dc.subject Cell annotation es
dc.subject Biological Processes es
dc.subject Breast cancer es
dc.title Cell annotation using scRNA-seq data: a protein-protein interaction network approach en
dc.type Articulo es
sedici.identifier.other https://doi.org/10.1016/j.mex.2023.102179 es
sedici.identifier.issn 2215-0161 es
sedici.creator.person Senra, Daniela es
sedici.creator.person Guisoni, Nara Cristina es
sedici.creator.person Diambra, Luis Aníbal es
sedici.subject.materias Biología es
sedici.description.fulltext true es
mods.originInfo.place Centro Regional de Estudios Genómicos es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle MethodsX es
sedici.relation.journalVolumeAndIssue vol. 10 es


Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)