Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2024-04-09T17:42:56Z
dc.date.available 2024-04-09T17:42:56Z
dc.date.issued 2023
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/164617
dc.description.abstract El pronóstico por conjuntos constituye una metodología consolidada para incorporar la incertidumbre asociada a los pronósticos en diversas escalas espaciales y temporales. En particular, en la mesoescala, no es claro aún cuáles son las técnicas más efectivas para representar la incertidumbre asociada a las condiciones iniciales y a los errores de modelo. En este trabajo se evalúan tres alternativas diferentes para la generación de pronósticos por conjuntos en alta resolución, y se realiza una comparación con un sistema de predicción por conjuntos global de baja resolución. Cada conjunto se construyo con 20 miembros utilizando el modelo WRF-ARW y 4 km de resolución horizontal sobre un dominio que abarca el centro noreste de Argentina. Se explora el desempeño de los conjuntos para un caso de estudio de precipitación intensa entre el 22 y 24 de diciembre de 2015. Los resultados se centran en el análisis del desempeño del pronóstico de precipitación y muestran que los conjuntos en alta resolución tienen mejor desempeño que el sistema global de menor resolución tanto en términos de la precisión del pronóstico como en términos de la cuantificación de su incertidumbre. En este trabajo, los conjuntos donde solo se perturban las condiciones iniciales y de borde tienden a mostrar una menor dispersión que aquellos en donde se combinan diferentes parametrizaciones de los procesos de escala sub-reticular para la representación de los errores de modelo. Estos últimos presentan además un menor sesgo para umbrales mayores a 10 mm. Asimismo, aumentar la resolución de las condiciones iniciales y de borde de la media del ensamble aumenta levemente la dispersión y mejora la representación espacial de los patrones de precipitación para todos los umbrales considerados. es
dc.description.abstract Ensemble forecasting is an established methodology for incorporating forecast uncertainty at various spatial and temporal scales. In particular, at mesoscale, it is not yet clear which are the most effective techniques to represent the uncertainty associated with initial conditions and model errors. In this paper, three different alternatives for generating ensemble forecasts at high resolution are evaluated and a comparison is made with a global ensemble at low resolution. Each ensemble was built using 20 members using the WRF-ARW model with a 4-km horizontal resolution over a domain covering central northeastern Argentina. The performance of the ensembles is explored for a case study of intense precipitation between 22 and 24 December 2015. Results are focused on the analysis of precipitation forecast performance and show that high resolution ensembles perform better than a low resolution global ensemble both in terms of forecast accuracy and quantification of uncertainty. While the regional ensembles tend to be, in general, poorly dispersive, the multiphysics ensembles show higher spread and lower bias for thresholds greater than 10 mm. Also, the incorporation of perturbations at the initial and boundary conditions slightly increases the spread and improves the spatial representation of precipitation patterns for all the thresholds considered. en
dc.language es es
dc.subject conjunto es
dc.subject alta resolución es
dc.subject Precipitación es
dc.subject ensemble es
dc.subject high-resolution es
dc.subject precipitation es
dc.title Evaluación de diferentes estrategias para la generación de sistemas de predicción por conjuntos regionales de escala convectiva en un caso de precipitación intensa es
dc.title.alternative Evaluation of different strategies to generate regional high-resolution ensembles in an intense precipitation case en
dc.type Articulo es
sedici.identifier.other https://doi.org/10.24215/1850468Xe022 es
sedici.identifier.issn 1850-468X es
sedici.creator.person Matsudo,Cynthia es
sedici.creator.person García Skabar, Yanina es
sedici.creator.person Ruiz, Juan José es
sedici.subject.materias Ciencias Astronómicas es
sedici.description.fulltext true es
mods.originInfo.place Centro Argentino de Meteorólogos es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Meteorológica es
sedici.relation.journalVolumeAndIssue vol. 48, no. 2 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)