Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2024-10-15T14:02:25Z
dc.date.available 2024-10-15T14:02:25Z
dc.date.issued 2024-10-11
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/171447
dc.description.abstract This article presents a study on predicting student attendance to exams in a university setting. The study focused on the Concept of Algorithms, Data, and Programs course, a foundational course in systems bachelor. Two models were constructed: linear regression and polynomial regression of degree 3, aimed to predict the total number of attendees and the number of students who would pass the exam. We built a dataset that included information on student enrollment, previous exam attendance, grades, and other relevant factors. Students were classified into three groups: reduced exam, complete exam with prior attendance, and complete exam without prior attendance. The results showed that the models’ predictions were accurate enough, and that they could be used to ensure appropriate classroom occupancy without overcrowding or empty rooms. The models guided the allocation of students, optimizing space utilization while providing available seats for attending students. The study identified opportunities for improvement. One limitation was the assignment of attendance probabilities to achieve the overall predicted attendance. Future work could involve predicting attendance rates for each group individually. Additionally, implementing a classification model to categorise students into pass, fail, insufficient, and non-attendance groups would provide a more comprehensive understanding of student outcomes. en
dc.language en es
dc.subject regression analysis es
dc.subject attendance prediction es
dc.subject approval prediction es
dc.subject effective resource planning es
dc.title Strategies to Predict Students’ Exam Attendance en
dc.type Objeto de conferencia es
sedici.identifier.uri https://link.springer.com/chapter/10.1007/978-3-031-70807-7_11 es
sedici.identifier.other https://doi.org/10.1007/978-3-031-70807-7_11 es
sedici.identifier.isbn 978-3-031-70807-7 es
sedici.creator.person Villarreal, Gonzalo Luján es
sedici.creator.person Artola, Verónica es
sedici.description.note Este trabajo fue realizado utilizando el conjunto de datos "Tasa de asistencia y aprobación a exámenes de CADP" (Villarreal, 2023), al que puede accederse haciendo clic en "Documentos relacionados". es
sedici.subject.materias Informática es
sedici.subject.materias Educación es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2024
sedici.relation.event 12th Conference on Cloud Computing, Big Data and Emerging Topics (JCC-BD&ET 2024) (La Plata, Argentina, June 25-27, 2024) es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/157959 es
sedici.relation.bookTitle Cloud Computing, Big Data and Emerging Topics. 12th Conference, JCC-BD&ET 2024, La Plata, Argentina, June 25-27, 2024, Revised Selected Papers es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)