Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2024-10-21T12:51:19Z
dc.date.available 2024-10-21T12:51:19Z
dc.date.issued 2024
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/171710
dc.description.abstract This work presents a process for developing an intelligent hybrid system designed to effectively leverage georeferenced data and expert knowledge. The effectiveness of this approach is demonstrated in this work through a specific case study, using the proposed system to achieve a powerful tool for mineral prospectivity. The system consists of three main phases: knowledge and valuable data acquisition, modeling, and results representation using prospectivity heat maps. In the initial step, the recovery and representation of expert knowledge for the case of study was conducted. This system design was tested in the Almadén Mercury Mining District, it involved interviewing expert geologists with ages of experience in the area. Afterwards, the gathering of georeferenced data was carried out to enrich the dataset. Following this phase, the modelling was done, first, using unsupervised techniques to unveil the underlying structure and patterns of the information. Later, employing supervised learning and knowledge representation techniques to enhance the results. In the final step, prospectivity maps were created to represent the achieved results to help in decision making. en
dc.format.extent 16-20 es
dc.language en es
dc.subject Hybrid intelligent systems es
dc.subject Mineral Exploration es
dc.subject Artificial intelligence es
dc.title Hybrid Intelligent System for Leveraging Georeferenced Data and Knowledge en
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-950-34-2413-1 es
sedici.creator.person Carrasco, D. es
sedici.creator.person Olivas, Jose A. es
sedici.creator.person Higueras, Pablo L. es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2024-06
sedici.relation.event XII Jornadas de Cloud Computing, Big Data & Emerging Topics (La Plata, 25 al 27 de junio de 2024) es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith https://sedici.unlp.edu.ar/handle/10915/171300 es
sedici.relation.bookTitle Short papers of the 12th Conference on Cloud Computing Conference, Big Data & Emerging Topics es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)