We present an a posteriori error estimator for a mixed finite element method for the Reissner-Mindlin plate model The finite element method we deal with was analyzed in [16] and can also be seen as a particular example of the general family analyzed in [13]. The estimator is based on the evaluation of the residual of the finite element solution. We show that the estimator yields locally lower and globally upper bounds of the error in the numerical solution in a natural norm for the problem, which includes the H} norms of the terms corresponding to the deflection and the rotation and a dual norm for the shearing force. The estimates are valid uniformly with respect to the plate thickness.
Notas
Material digitalizado en SEDICI gracias a la colaboración de la Biblioteca del Departamento de Matemática de la Facultad de Ciencias Exactas (UNLP).
Información general
Fecha de publicación:1999
Idioma del documento:Inglés
Revista:Notas de Matemática; no. 70
Institución de origen:Facultad de Ciencias Exactas
Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)