Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2024-11-07T16:12:03Z
dc.date.available 2024-11-07T16:12:03Z
dc.date.issued 2000
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/172777
dc.description.abstract The existence of a continuous right inverse of the divergence operator in W01'p(Ω)n, 1 < p < ∞, is a well known result which is basic in the analysis of the Stokes equations. The object of this paper is to give a constructive proof of the existence of such an operator and to show that the continuity holds also for some weighted norms. Our results are valid for Ω C IP.π a bounded domain which is star-shaped with respect to a ball B C Ω. The continuity results are obtained by using the classical theory of singular integrals of Calderon and Zygmund and general results on weighted estimates proven by Stein. The weights considered here are of interest in the analysis of finite element methods. In particular, our result allows to extend to the three dimensional case the general results on uniform convergence of finite element approximations of the Stokes equations. en
dc.language en es
dc.title An explicit right inverse of the divergence operator which is continuous in weighted norms en
dc.type Publicacion seriada es
sedici.title.subtitle Notas de Matemática, 72 es
sedici.creator.person Durán, Ricardo Guillermo es
sedici.creator.person Muschietti, María Amelia es
sedici.description.note Material digitalizado en SEDICI gracias a la colaboración de la Biblioteca del Departamento de Matemática de la Facultad de Ciencias Exactas (UNLP). es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Publicacion seriada es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.relation.journalTitle Notas de Matemática es
sedici.relation.journalVolumeAndIssue no. 72 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)