Busque entre los 164277 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2012-11-02T14:56:25Z | |
dc.date.available | 2012-11-02T14:56:25Z | |
dc.date.issued | 1999-10 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/23543 | |
dc.description.abstract | In scheduling, a set of machines in parallel is a setting that is important, from both the theoretical and practical points of view. From the theoretical viewpoint, it is a generalization of the single machine scheduling problem. From the practical point of view the occurrence of resources in parallel is common in real-world. When machines are computers, a parallel program can be conceived as a set of parallel components (tasks) which can be executed according to some precedence relationship. In this case efficient scheduling of tasks permits to take full advantage of the computational power provided by a multiprocessor or a multicomputer system. This kind of planning involves the assignment of partially ordered tasks onto the system architecture processing components. This paper shows the problem of allocating a number of non-identical tasks in a multiprocessor or multicomputer system. The model assumes that the system consists of a number of identical processors and only one task may execute on a processor at a time. All schedules and tasks are non-preemptive. The well-known Graham’s list scheduling algorithm (LSA) is contrasted with an evolutionary approach using a direct representation of solutions. | en |
dc.language | en | es |
dc.subject | Task scheduling | en |
dc.subject | Evolución | es |
dc.subject | Scheduling | es |
dc.subject | Algorithms | es |
dc.subject | evolutionary algorithms | en |
dc.subject | direct representation | en |
dc.subject | Parallel | es |
dc.subject | List Scheduling Algorithm | en |
dc.title | A genetic approach using direct representation of solution for the parallel task scheduling problem | en |
dc.type | Objeto de conferencia | es |
sedici.creator.person | Esquivel, Susana Cecilia | es |
sedici.creator.person | Gatica, Claudia R. | es |
sedici.creator.person | Gallard, Raúl Hector | es |
sedici.description.note | Eje: Computación evolutiva | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Red de Universidades con Carreras en Informática (RedUNCI) | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
sedici.date.exposure | 2001-10 | |
sedici.relation.event | V Congreso Argentino de Ciencias de la Computación | es |
sedici.description.peerReview | peer-review | es |