Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2012-11-02T14:56:25Z
dc.date.available 2012-11-02T14:56:25Z
dc.date.issued 1999-10
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/23543
dc.description.abstract In scheduling, a set of machines in parallel is a setting that is important, from both the theoretical and practical points of view. From the theoretical viewpoint, it is a generalization of the single machine scheduling problem. From the practical point of view the occurrence of resources in parallel is common in real-world. When machines are computers, a parallel program can be conceived as a set of parallel components (tasks) which can be executed according to some precedence relationship. In this case efficient scheduling of tasks permits to take full advantage of the computational power provided by a multiprocessor or a multicomputer system. This kind of planning involves the assignment of partially ordered tasks onto the system architecture processing components. This paper shows the problem of allocating a number of non-identical tasks in a multiprocessor or multicomputer system. The model assumes that the system consists of a number of identical processors and only one task may execute on a processor at a time. All schedules and tasks are non-preemptive. The well-known Graham’s list scheduling algorithm (LSA) is contrasted with an evolutionary approach using a direct representation of solutions. en
dc.language en es
dc.subject Task scheduling en
dc.subject Evolución es
dc.subject Scheduling es
dc.subject Algorithms es
dc.subject evolutionary algorithms en
dc.subject direct representation en
dc.subject Parallel es
dc.subject List Scheduling Algorithm en
dc.title A genetic approach using direct representation of solution for the parallel task scheduling problem en
dc.type Objeto de conferencia es
sedici.creator.person Esquivel, Susana Cecilia es
sedici.creator.person Gatica, Claudia R. es
sedici.creator.person Gallard, Raúl Hector es
sedici.description.note Eje: Computación evolutiva es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
sedici.date.exposure 2001-10
sedici.relation.event V Congreso Argentino de Ciencias de la Computación es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)