Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2012-11-02T20:26:32Z
dc.date.available 2012-11-02T20:26:32Z
dc.date.issued 2007
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/23579
dc.description.abstract Harvesting topical content is a process that can be done by formulating topic-relevant queries and submitting them to a search engine. The quality of the material collected through this process is highly dependant on the vocabulary used to generate the search queries. In this scenario, selecting good query terms can be seen as an optimization problem where the objective function to be optimized is based on the effectiveness of a query to retrieve relevant material. Three characteristics of this optimization problem are (1) the high-dimensionality of the search space, where candidate solutions are queries and each term corresponds to a different dimension, (2) the existence of acceptable suboptimal solutions, and (3) the possibility of finding multiple solutions. This paper describes optimization techniques based on Genetic Algorithms to evolve “good query terms” in the context of a given topic. We discuss the use of a mutation pool to allow the generation of queries with novel terms, and study the effect of different mutation rates on the exploration of query-space. en
dc.format.extent 1585-1596 es
dc.language en es
dc.subject Information Search and Retrieval es
dc.subject topical web search en
dc.subject Search process es
dc.subject genetic algorithms en
dc.subject query formulation en
dc.subject query optimization en
dc.subject Query processing es
dc.title Genetic algorithms for topical web search: A study of different mutation rates en
dc.type Objeto de conferencia es
sedici.creator.person Cecchini, Rocío L. es
sedici.creator.person Lorenzetti, Carlos M. es
sedici.creator.person Maguitman, Ana Gabriela es
sedici.creator.person Brignole, Nélida B. es
sedici.subject.materias Ciencias Informáticas es
sedici.subject.materias Informática es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
sedici.date.exposure 2007-10
sedici.relation.event XIII Congreso Argentino de Ciencias de la Computación es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)