Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2016-11-16T12:52:57Z
dc.date.available 2016-11-16T12:52:57Z
dc.date.issued 2016
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/56763
dc.description.abstract New applications of text categorization methods like opinion mining and sentiment analysis, author profiling and plagiarism detection requires more elaborated and effective document representation models than classical Information Retrieval approaches like the Bag of Words representation. In this context, word representation models in general and vector-based word representations in particular have gained increasing interest to overcome or alleviate some of the limitations that Bag of Words-based representations exhibit. In this article, we analyze the use of several vector-based word representations in a sentiment analysis task with movie reviews. Experimental results show the effectiveness of some vector-based word representations in comparison to standard Bag of Words representations. In particular, the Second Order Attributes representation seems to be very robust and effective because independently the classifier used with, the results are good. en
dc.format.extent 785-793 es
dc.language en es
dc.subject text mining en
dc.subject word-based representations en
dc.subject text categorization en
dc.subject movie reviews en
dc.subject sentiment analysis en
dc.title Vector-based word representations for sentiment analysis: a comparative study en
dc.type Objeto de conferencia es
sedici.creator.person Villegas, María Paula es
sedici.creator.person Garciarena Ucelay, María José es
sedici.creator.person Fernández, Juan Pablo es
sedici.creator.person Álvarez Carmona, Miguel A. es
sedici.creator.person Errecalde, Marcelo Luis es
sedici.creator.person Cagnina, Leticia es
sedici.description.note XIII Workshop Bases de datos y Minería de Datos (WBDMD). es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2016-10
sedici.relation.event XXII Congreso Argentino de Ciencias de la Computación (CACIC 2016). es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/55718 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)