Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2016-11-16T13:05:51Z
dc.date.available 2016-11-16T13:05:51Z
dc.date.issued 2016
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/56769
dc.description.abstract This paper performs a comparative analysis of two kind of methods for extracting credit risk rules. On one hand we have a set of methods based on the combination of an optimization technique initialized with a neural network. On the other hand there are partition algorithms, based on trees. We show results obtain on two real databases. The main findings are that the set of rules obtained by the first set of methods give a set of rules with a reduced cardinality, with an acceptable precision regarding classification. This is a desirable property for financial institutions, who want to decide credit approval face to face with customers. Bank employees who daily deal with retail customers can be easily trained for selecting the best customers, by using this kind of solutions. en
dc.format.extent 834-841 es
dc.language en es
dc.subject credit scoring en
dc.subject classification rules en
dc.subject Learning Vector Quantization (LVQ) en
dc.subject Particle Swarm Optimization (PSO) en
dc.title An exploratory analysis of methods for extracting credit risk rules en
dc.type Objeto de conferencia es
sedici.creator.person Jimbo Santana, Patricia es
sedici.creator.person Villa Monte, Augusto es
sedici.creator.person Rucci, Enzo es
sedici.creator.person Lanzarini, Laura Cristina es
sedici.creator.person Bariviera, Aurelio es
sedici.description.note XIII Workshop Bases de datos y Minería de Datos (WBDMD). es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática (RedUNCI) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2016-10
sedici.relation.event XXII Congreso Argentino de Ciencias de la Computación (CACIC 2016). es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/55718 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)