Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2017-05-05T11:45:25Z
dc.date.available 2017-05-05T11:45:25Z
dc.date.issued 2017-04
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/59992
dc.description.abstract Identification of individuals in marine species, especially in Cetacea, is a critical task in several biological and ecological endeavours. Most of the times this is performed through human-assisted matching within a set of pictures taken in different campaigns during several years and spread around wide geographical regions. This requires that the scientists perform laborious tasks in searching through archives of images, demanding a significant cognitive burden which may be prone to intra- and interobserver operational errors. On the other hand, additional available information, in particular the metadata associated to every image, is not fully taken advantage of. The present work presents the result of applying machine learning techniques over the metadata of archives of images as an aid in the process of manual identification. The method was tested on a database containing several pictures of 223 different Commerson’s dolphins (Cephalorhynchus commersoni) taken over a span of seven years. A supervised classifier trained with identifications made by the researchers was able to identify correctly above 90% of the individuals on the test set using only the metadata present in the image files. This reduces significantly the number of images to be manually compared, and therefore the time and errors associated with the assisted identification process. en
dc.format.extent 79-84 es
dc.language en es
dc.subject machine learning en
dc.subject Cetáceos es
dc.subject Delfines es
dc.subject photo-identification en
dc.title Wild Cetacea Identification using Image Metadata en
dc.type Articulo es
sedici.identifier.uri http://journal.info.unlp.edu.ar/wp-content/uploads/2017/05/JCST-44-Paper-10.pdf es
sedici.identifier.issn 1666-6038 es
sedici.creator.person Pollicelli, Débora es
sedici.creator.person Coscarella, Mariano es
sedici.creator.person Delrieux, Claudio es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Informática es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 3.0 Unported (CC BY 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by/3.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Journal of Computer Science & Technology es
sedici.relation.journalVolumeAndIssue vol. 17, no. 1 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 3.0 Unported (CC BY 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 3.0 Unported (CC BY 3.0)