Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2018-05-14T13:29:07Z
dc.date.available 2018-05-14T13:29:07Z
dc.date.issued 2018-04
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/66739
dc.description.abstract Video-based fire detection (VFD) technologies have received significant attention from both academic and industrial communities recently. However, existing VFD approaches are still susceptible to false alarms due to changes in illumination, camera noise, variability of shape, motion, colour, irregular patterns of smoke and flames, modelling and training inaccuracies. Hence, this work aimed at developing a VSD system that will have a high detection rate, low false-alarm rate and short response time. Moving blocks in video frames were segmented and analysed in HSI colour space, and wavelet energy analysis of the smoke candidate blocks was performed. In addition, Dynamic texture descriptors were obtained using Weber Local Descriptor in Three Orthogonal Planes (WLD-TOP). These features were combined and used as inputs to Support Vector Classifier with radial based kernel function, while post-processing stage employs temporal image filtering to reduce false alarm. The algorithm was implemented in MATLAB 8.1.0.604 (R2013a). Accuracy of 99.30%, detection rate of 99.28% and false alarm rate of 0.65% were obtained when tested with some online videos. The output of this work would find applications in early fire detection systems and other applications such as robot vision and automated inspection. en
dc.format.extent 35-47 es
dc.language en es
dc.subject video-based smoke detection en
dc.subject weber local descriptor en
dc.subject three orthogonal planes en
dc.subject dynamic texture descriptors en
dc.subject support vector machine en
dc.title Effective Smoke Detection Using Spatial-Temporal Energy and Weber Local Descriptors in Three Orthogonal Planes (WLD-TOP) en
dc.type Articulo es
sedici.identifier.other https://doi.org/10.24215/16666038.18.e05
sedici.identifier.issn 1666-6038 es
sedici.creator.person Ojo, John Adedapo es
sedici.creator.person Oladosu, Jamiu Alabi es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Informática es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Journal of Computer Science & Technology es
sedici.relation.journalVolumeAndIssue vol. 18, no. 1 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)