Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2019-04-24T14:31:49Z
dc.date.available 2019-04-24T14:31:49Z
dc.date.issued 2019-04
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/74462
dc.description.abstract The wealth of opinions expressed in micro-blogs, such as tweets, motivated researchers to develop techniques for automatic opinion detection. However, accuracies of such techniques are still limited. Moreover, current techniques focus on detecting sentiment polarity regardless of the topic (target) discussed. Detecting sentiment towards a specific target, referred to as target-dependent sentiment classification, has not received adequate researchers’ attention. Literature review has shown that all target-dependent approaches use supervised learning techniques. Such techniques need a large number of labeled data. However, labeling data in social media is cumbersome and error prone. The research presented in this paper addresses this issue by employing semi-supervised learning techniques for target-dependent sentiment classification. Semisupervised learning techniques make use of labeled as well as unlabeled data. In this paper, we present a new semi-supervised learning technique that uses less number of labeled micro-blogs than that used by supervised learning techniques. Experiment results have shown that the proposed technique provides comparable accuracy. en
dc.format.extent 55-65 es
dc.language en es
dc.subject social opinions en
dc.subject sentiment analysis en
dc.subject target-dependent en
dc.subject polarity classification en
dc.subject semi- supervised learning en
dc.title Semi-Supervised Target-Dependent Sentiment Classification for Micro-Blogs en
dc.title.alternative Clasificación de sentimientos semi-supervisada y dependiente de objetivo para micro- blogs es
dc.type Articulo es
sedici.identifier.other https://doi.org/10.24215/16666038.19.e06
sedici.identifier.issn 1666-6038 es
sedici.creator.person Abudalfa, Shadi I. es
sedici.creator.person Ahmed, Moataz A. es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Informática es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Journal of Computer Science & Technology es
sedici.relation.journalVolumeAndIssue vol. 19, no. 1 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)