Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2004-02-05T20:14:22Z
dc.date.available 2004-02-05T03:00:00Z
dc.date.issued 2003-04
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/9455
dc.description.abstract The identification and classification of seeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in ocular inspection one should consider seed size, shape, color and texture, which can be obtained from seed images. In this work we complement previous studies on the discriminating power of these characteristics for the unique identification of seeds of 57 weed species. In particular, we discuss the possibility of improving the naïve Bayes and artificial neural network classifiers previously developed in order to avoid the use of color features as classification parameters. Morphological and textural seed characteristics can be obtained from black and white images, which are easier to process and require a cheaper hardware than color ones. To this end, we boost the classification methods by means of the AdaBoost.M1 technique, and compare the results obtained with the performance achieved when using color images. We conclude that boosting the naïve Bayes and neural classifiers does not fully compensate the discriminating power of color features. However, the improvement in classification accuracy might be enough to make the classifier still acceptable in practical applications. en
dc.format.extent 34-39 es
dc.language en es
dc.subject boosting es
dc.subject Redes Neurales (Computación) es
dc.subject machine vision es
dc.title Boosting classifiers for weed seeds identification en
dc.type Articulo es
sedici.identifier.uri http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr03-6.pdf es
sedici.identifier.issn 1666-6038 es
sedici.creator.person Granitto, Pablo Miguel es
sedici.creator.person Garralda, Pablo A. es
sedici.creator.person Verdes, Pablo Fabián es
sedici.creator.person Ceccatto, Hermenegildo Alejandro es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Informática es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc/3.0/
sedici.description.peerReview peer-review es
sedici2003.identifier ARG-UNLP-ART-0000000077 es
sedici.relation.journalTitle Journal of Computer Science & Technology es
sedici.relation.journalVolumeAndIssue vol. 3, no. 1 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)