Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2008-10-08T20:09:20Z
dc.date.available 2008-10-08T03:00:00Z
dc.date.issued 2008-07
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/9632
dc.description.abstract Many computational applications need to look for information in a database. Nowadays, the predominance of nonconventional databases makes the similarity search (i.e., searching elements of the database that are "similar" to a given query) becomes a preponderant concept. The Spatial Approximation Tree has been shown that it compares favorably against alternative data structures for similarity searching in metric spaces of medium to high dimensionality ("difficult" spaces) or queries with low selectivity. However, for the construction process the tree root has been randomly selected and the tree ,in its shape and performance, is completely determined by this selection. Therefore, we are interested in improve mainly the searches in this data structure trying to select the tree root so to reflect some of the own characteristics of the metric space to be indexed. We regard that selecting the root in this way it allows a better adaption of the data structure to the intrinsic dimensionality of the metric space considered, so also it achieves more efficient similarity searches. en
dc.format.extent 111-117 es
dc.language en es
dc.subject Base de Datos es
dc.subject Metrics es
dc.title Optimizing the spatial approximation tree from the root en
dc.type Articulo es
sedici.identifier.uri http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Jul08-9.pdf es
sedici.identifier.issn 1666-6038 es
sedici.creator.person Gómez, Alejandro J. es
sedici.creator.person Ludueña, Verónica es
sedici.creator.person Reyes, Nora Susana es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Informática es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc/3.0/
sedici.description.peerReview peer-review es
sedici2003.identifier ARG-UNLP-ART-0000000809 es
sedici.relation.journalTitle Journal of Computer Science & Technology es
sedici.relation.journalVolumeAndIssue vol. 8, no. 2 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)